Solveeit Logo

Question

Physics Question on Motion in a plane

Two vectors are given by A=(3i^+j^+3k^)\vec{A}=\left(3\hat{i} +\hat{j}+3\hat{k}\right) and B=(3i^+5j^2k^) \vec{B}=\left(3\hat{i} +5\hat{j}-2\hat{k}\right). Find the third vector C\vec{C} if A+3BC=0.\vec{A}+3\vec{B}-\vec{C}=0.

A

(12i^+14j^+12k^)\left(12 \hat{i}+14 \hat{j}+12 \hat{k}\right)

B

(13i^+17j^+12k^)\left(13 \hat{i}+17 \hat{j}+12 \hat{k}\right)

C

(12i^+16j^3k^)\left(12 \hat{i}+16 \hat{j}-3 \hat{k}\right)

D

(15i^+13j^+4k^)\left(15 \hat{i}+13 \hat{j}+4 \hat{k}\right)

Answer

(12i^+16j^3k^)\left(12 \hat{i}+16 \hat{j}-3 \hat{k}\right)

Explanation

Solution

A+3BC=0\vec{A}+3\vec{B}-\vec{C}=0
3i^+j^+3k^+3(3i^+5j^2k^)C=03\hat{i}+\hat{j}+3\hat{k}+3\left(3 \hat{i}+5\hat{j}-2 \hat{k}\right)-\vec{C}=0
12i^+16j^3k^C=012 \hat{i}+16 \hat{j}-3 \hat{k}-\vec{C}=0,
C=12i^+16j^3k^\vec{C}=12 \hat{i}+16 \hat{j}-3 \hat{k}