Solveeit Logo

Question

Physics Question on Motion in a plane

Two vectors are given by A=(i^+2j+k^)\vec{A} = (\hat{i} + 2j + \hat{k}) and B=(3i^+6j^+2k^)\vec{B} = (3\hat{i} + 6\hat{j} + 2\hat{k}). Another vector C\vec{C} has the same magnitude as B\vec{B} but has the same direction as A\vec{A}. Then which of the following vectors represents C\vec{C} ?

A

73(i^+2j^+2k^) \frac{7}{3}\left( \hat{i} + 2\hat{j} + 2\hat{k}\right)

B

37(i^2j^+2k^) \frac{3}{7}\left( \hat{i} - 2\hat{j} + 2\hat{k}\right)

C

79(i^2j^+2k^) \frac{7}{9}\left( \hat{i} - 2\hat{j} + 2\hat{k}\right)

D

97(i^+2j^+2k^) \frac{9}{7}\left( \hat{i} + 2\hat{j} + 2\hat{k}\right)

Answer

73(i^+2j^+2k^) \frac{7}{3}\left( \hat{i} + 2\hat{j} + 2\hat{k}\right)

Explanation

Solution

Given, A=i^+2j^+2k^A=\hat{i}+2 \hat{ j }+2 \hat{ k } and B=3i^+6j^+2k^B =3 \hat{ i }+6 \hat{ j }+2 \hat{ k }
So, C=i^+2j^+2k^1+4+4×32+62+22C =\frac{\hat{ i }+2 \hat{ j }+2 \hat{ k }}{\sqrt{1+4+4}} \times \sqrt{3^{2}+6^{2}+2^{2}}
=i^+2j^+2k^3×49=73(i^+2j^+2k^)=\frac{\hat{ i }+2 \hat{ j }+2 \hat{ k }}{3} \times \sqrt{49}=\frac{7}{3}(\hat{i}+2 \hat{ j }+2 \hat{ k })