Solveeit Logo

Question

Physics Question on Electric charges and fields

Two unlike charges of the same magnitude QQ are placed at a distance dd. The intensity of the electric field at the middle point in the line joining the two charges

A

zero

B

8Q4πε0d2 \frac{8\,Q}{4\pi \varepsilon _{0}d^{2}}

C

6Q4πε0d2 \frac{6\,Q}{4\pi \varepsilon _{0}d^{2}}

D

4Q4πε0d2 \frac{4\,Q}{4\pi \varepsilon _{0}d^{2}}

Answer

8Q4πε0d2 \frac{8\,Q}{4\pi \varepsilon _{0}d^{2}}

Explanation

Solution

Two equal and opposite charges are placed at a distance d.Electric field at centre due to
+ Q+\text{ }Q charge (E1)=14πε0(Q)(d/2)2({{E}_{1}})=\frac{1}{4\pi {{\varepsilon }_{0}}}\,\frac{(Q)}{{{(d/2)}^{2}}}
Similarly, electric field due to Q-Q charge (E2)=14πε0(Q)(d/2)2({{E}_{2}})=\frac{1}{4\pi {{\varepsilon }_{0}}}\,\frac{(Q)}{{{(d/2)}^{2}}}
Therefore, net electric field at point
E=E1+E2E={{E}_{1}}+{{E}_{2}}
=14πε04Qd2+14πε04Qd2=\frac{1}{4\pi {{\varepsilon }_{0}}}\,\,\frac{4Q}{{{d}^{2}}}+\frac{1}{4\pi {{\varepsilon }_{0}}}\,\,\frac{4Q}{{{d}^{2}}}
=14πε08Qd2=\frac{1}{4\pi {{\varepsilon }_{0}}}\,\,\frac{8Q}{{{d}^{2}}}