Solveeit Logo

Question

Question: Two uniform spheres, each of mass 0.260 kg are fixed at points 'A' and 'B' as shown in the figure. F...

Two uniform spheres, each of mass 0.260 kg are fixed at points 'A' and 'B' as shown in the figure. Find the magnitude and direction of the initial acceleration of a sphere with mass 0.010 kg if it is released from rest at point 'P' and acted only by forces of gravitational attraction of sphere at 'A' and 'B' (give your answer in terms of G).

Answer

Magnitude of acceleration: 4.165G m/s24.16\sqrt{5}G \text{ m/s}^2

Direction of acceleration: Vertically downwards

Explanation

Solution

The problem asks for the initial acceleration of a small sphere released from rest at point P, subjected to gravitational forces from two larger spheres at points A and B.

1. Define the Coordinate System and Given Values: Let the origin be at the midpoint of AB.

  • Point A: (0.100 m,0)(-0.100 \text{ m}, 0)
  • Point B: (0.100 m,0)(0.100 \text{ m}, 0)
  • Point P: (0,0.200 m)(0, 0.200 \text{ m})
  • Mass of spheres at A and B: M=0.260 kgM = 0.260 \text{ kg}
  • Mass of sphere at P: m=0.010 kgm = 0.010 \text{ kg}

2. Calculate Distances from P to A and P to B: The distance rAPr_{AP} between P(0,0.200)(0, 0.200) and A(0.100,0)(-0.100, 0) is:

rAP=(0.1000)2+(00.200)2=(0.100)2+(0.200)2r_{AP} = \sqrt{(-0.100 - 0)^2 + (0 - 0.200)^2} = \sqrt{(-0.100)^2 + (-0.200)^2}

rAP=0.0100+0.0400=0.0500 mr_{AP} = \sqrt{0.0100 + 0.0400} = \sqrt{0.0500} \text{ m}

The distance rBPr_{BP} between P(0,0.200)(0, 0.200) and B(0.100,0)(0.100, 0) is:

rBP=(0.1000)2+(00.200)2=(0.100)2+(0.200)2r_{BP} = \sqrt{(0.100 - 0)^2 + (0 - 0.200)^2} = \sqrt{(0.100)^2 + (-0.200)^2}

rBP=0.0100+0.0400=0.0500 mr_{BP} = \sqrt{0.0100 + 0.0400} = \sqrt{0.0500} \text{ m}

Since rAP=rBPr_{AP} = r_{BP}, let r=0.0500 mr = \sqrt{0.0500} \text{ m}. Thus, r2=0.0500 m2r^2 = 0.0500 \text{ m}^2.

3. Calculate the Magnitudes of Gravitational Forces: According to Newton's Law of Universal Gravitation, F=GMmr2F = \frac{GMm}{r^2}.

  • Force due to sphere A on sphere P (FAF_A):

FA=G×M×mrAP2=G×0.260 kg×0.010 kg0.0500 m2F_A = \frac{G \times M \times m}{r_{AP}^2} = \frac{G \times 0.260 \text{ kg} \times 0.010 \text{ kg}}{0.0500 \text{ m}^2}

FA=0.0026G0.05=0.052G NF_A = \frac{0.0026 G}{0.05} = 0.052 G \text{ N}

  • Force due to sphere B on sphere P (FBF_B):

FB=G×M×mrBP2=G×0.260 kg×0.010 kg0.0500 m2F_B = \frac{G \times M \times m}{r_{BP}^2} = \frac{G \times 0.260 \text{ kg} \times 0.010 \text{ kg}}{0.0500 \text{ m}^2}

FB=0.0026G0.05=0.052G NF_B = \frac{0.0026 G}{0.05} = 0.052 G \text{ N}

So, FA=FB=0.052GF_A = F_B = 0.052 G.

4. Determine the Direction and Components of Forces: The forces are attractive, acting along the lines joining the centers of the spheres. Let's find the components of these forces. The vector from P to A is rPA=AP=(0.100,0.200)\vec{r}_{PA} = A - P = (-0.100, -0.200). The vector from P to B is rPB=BP=(0.100,0.200)\vec{r}_{PB} = B - P = (0.100, -0.200).

The force FA\vec{F_A} acts in the direction of rPA\vec{r}_{PA}:

FA=FArPArPA=0.052G(0.100,0.200)0.05\vec{F_A} = F_A \frac{\vec{r}_{PA}}{|\vec{r}_{PA}|} = 0.052 G \frac{(-0.100, -0.200)}{\sqrt{0.05}}

FA=(0.052G×0.1000.05,0.052G×0.2000.05)\vec{F_A} = \left( \frac{-0.052 G \times 0.100}{\sqrt{0.05}}, \frac{-0.052 G \times 0.200}{\sqrt{0.05}} \right)

The force FB\vec{F_B} acts in the direction of rPB\vec{r}_{PB}:

FB=FBrPBrPB=0.052G(0.100,0.200)0.05\vec{F_B} = F_B \frac{\vec{r}_{PB}}{|\vec{r}_{PB}|} = 0.052 G \frac{(0.100, -0.200)}{\sqrt{0.05}}

FB=(0.052G×0.1000.05,0.052G×0.2000.05)\vec{F_B} = \left( \frac{0.052 G \times 0.100}{\sqrt{0.05}}, \frac{-0.052 G \times 0.200}{\sqrt{0.05}} \right)

5. Calculate the Net Force: The net force Fnet=FA+FB\vec{F}_{net} = \vec{F_A} + \vec{F_B}.

  • X-component of net force:

Fnet,x=0.052G×0.1000.05+0.052G×0.1000.05=0F_{net,x} = \frac{-0.052 G \times 0.100}{\sqrt{0.05}} + \frac{0.052 G \times 0.100}{\sqrt{0.05}} = 0

(Due to symmetry, the horizontal components cancel out).

  • Y-component of net force:

Fnet,y=0.052G×0.2000.05+0.052G×0.2000.05F_{net,y} = \frac{-0.052 G \times 0.200}{\sqrt{0.05}} + \frac{-0.052 G \times 0.200}{\sqrt{0.05}}

Fnet,y=2×(0.052G×0.2000.05)=0.0208G0.05F_{net,y} = 2 \times \left( \frac{-0.052 G \times 0.200}{\sqrt{0.05}} \right) = \frac{-0.0208 G}{\sqrt{0.05}}

So, the net force vector is Fnet=(0,0.0208G0.05)\vec{F}_{net} = \left( 0, -\frac{0.0208 G}{\sqrt{0.05}} \right). The magnitude of the net force is Fnet=0.0208G0.05F_{net} = \frac{0.0208 G}{\sqrt{0.05}}. The direction is vertically downwards.

6. Calculate the Initial Acceleration: Using Newton's Second Law, Fnet=ma\vec{F}_{net} = m\vec{a}.

a=Fnetm=10.010 kg(0,0.0208G0.05)\vec{a} = \frac{\vec{F}_{net}}{m} = \frac{1}{0.010 \text{ kg}} \left( 0, -\frac{0.0208 G}{\sqrt{0.05}} \right)

a=(0,0.0208G0.0100.05)\vec{a} = \left( 0, -\frac{0.0208 G}{0.010 \sqrt{0.05}} \right)

a=(0,2.08G0.05)\vec{a} = \left( 0, -\frac{2.08 G}{\sqrt{0.05}} \right)

The magnitude of the acceleration is a=2.08G0.05a = \frac{2.08 G}{\sqrt{0.05}}. To simplify the expression:

a=2.08G5/100=2.08G5/10=2.08×10G5=20.8G5a = \frac{2.08 G}{\sqrt{5/100}} = \frac{2.08 G}{\sqrt{5}/10} = \frac{2.08 \times 10 G}{\sqrt{5}} = \frac{20.8 G}{\sqrt{5}} To rationalize the denominator:

a=20.85G5=4.165G m/s2a = \frac{20.8 \sqrt{5} G}{5} = 4.16 \sqrt{5} G \text{ m/s}^2

The direction of the acceleration is the same as the net force, which is vertically downwards (towards the origin).

The final answer is 4.165G m/s2 vertically downwards\boxed{4.16\sqrt{5}G \text{ m/s}^2 \text{ vertically downwards}}.

Explanation of the solution:

  1. Calculated distances from P to A and P to B, finding them equal (r=0.05r = \sqrt{0.05} m).
  2. Calculated the magnitude of gravitational force from A (or B) on P using F=GMmr2F = \frac{GMm}{r^2}, which is 0.052G0.052G.
  3. Resolved forces into components. Due to symmetry, horizontal components cancel out.
  4. Summed vertical components: Fnet,y=2FcosθF_{net,y} = -2 F \cos\theta. The angle θ\theta of the force vector with the vertical axis has cosθ=0.20.05\cos\theta = \frac{0.2}{\sqrt{0.05}}.
  5. Calculated net force Fnet,y=0.0208G0.05F_{net,y} = -\frac{0.0208 G}{\sqrt{0.05}}.
  6. Calculated acceleration a=Fnet,yma = \frac{F_{net,y}}{m} to get a=20.8G5=4.165G m/s2a = \frac{20.8 G}{\sqrt{5}} = 4.16 \sqrt{5} G \text{ m/s}^2.
  7. Direction is vertically downwards.