Solveeit Logo

Question

Physics Question on thermal properties of matter

Two uniform metal rods of lengths l1{{l}_{1}} and l2{{l}_{2}} and linear coefficients of expansion α1{{\alpha }_{1}} and α2{{\alpha }_{2}} respectively are connected to form a single rod of length (l1+l2).({{l}_{1}}+{{l}_{2}}). When the temperature of the combined rod is raised by t ?C, the length of each rod increases by the same amount. Then (α2α1+α2)\left( \frac{{{\alpha }_{2}}}{{{\alpha }_{1}}+{{\alpha }_{2}}} \right) is:

A

l1(l1+l2)\frac{{{l}_{1}}}{\left( {{l}_{1}}+{{l}_{2}} \right)}

B

(l1+l2)l1\frac{\left( {{l}_{1}}+{{l}_{2}} \right)}{{{l}_{1}}}

C

l2(l1+l2)\frac{{{l}_{2}}}{\left( {{l}_{1}}+{{l}_{2}} \right)}

D

(l1+l2)l2\frac{({{l}_{1}}+{{l}_{2}})}{{{l}_{2}}}

Answer

l2(l1+l2)\frac{{{l}_{2}}}{\left( {{l}_{1}}+{{l}_{2}} \right)}

Explanation

Solution

Initial length of I rod =l1={{l}_{1}} Initial length of II rod =l2={{l}_{2}} Linear coefficient of 1 rod =α1={{\alpha }_{1}} Linear coefficient of II rod =α2={{\alpha }_{2}} If temperature of combined rod increases by toC,t{{\,}^{o}}C, then increase in length in I rod Δl2=l1α1t\Delta {{l}_{2}}=\frac{{{l}_{1}}}{{{\alpha }_{1}}t} Increase in length of II rod Δl2=l2α2t\Delta {{l}_{2}}=\frac{{{l}_{2}}}{{{\alpha }_{2}}t} and Δl1=Δl2\Delta {{l}_{1}}=\Delta {{l}_{2}} \therefore l1α1t=l2α2tl1α1=l2α2\frac{{{l}_{1}}}{{{\alpha }_{1}}t}=\frac{{{l}_{2}}}{{{\alpha }_{2}}t}\Rightarrow \frac{{{l}_{1}}}{{{\alpha }_{1}}}=\frac{{{l}_{2}}}{{{\alpha }_{2}}} \Rightarrow α2α1=l2l1α1α2=l1l2\frac{{{\alpha }_{2}}}{{{\alpha }_{1}}}=\frac{{{l}_{2}}}{{{l}_{1}}}\Rightarrow \frac{{{\alpha }_{1}}}{{{\alpha }_{2}}}=\frac{{{l}_{1}}}{{{l}_{2}}} \Rightarrow α1α2+1=l1l2+1\frac{{{\alpha }_{1}}}{{{\alpha }_{2}}}+1=\frac{{{l}_{1}}}{{{l}_{2}}}+1 α1+α2α2=l1+l2l2\frac{{{\alpha }_{1}}+{{\alpha }_{2}}}{{{\alpha }_{2}}}=\frac{{{l}_{1}}+{{l}_{2}}}{{{l}_{2}}} \Rightarrow α2α1+α2=l2l1+l2\frac{{{\alpha }_{2}}}{{{\alpha }_{1}}+{{\alpha }_{2}}}=\frac{{{l}_{2}}}{{{l}_{1}}+{{l}_{2}}}