Solveeit Logo

Question

Physics Question on sound

Two tuning forks with natural frequencies 340Hz340\,Hz each move relative to a stationary observer. One fork moves away from the observer, while the other moves towards the observer at the same speed. The observer hears beats of frequency 3Hz3\, Hz. Find the speed of the tuning forks.

A

1.5 m/s

B

2 m/s

C

1 m/s

D

2.5 m/s

Answer

1.5 m/s

Explanation

Solution

Let v=v= speed of sound and vS=v_{S}= speed of tuning forks.
Apparent frequency of fork moving towards the observer is
n1=(vvvs)nn_{1}=\left(\frac{v}{v-v_{s}}\right) n
Apparent frequency of the fork moving away from the observer is
n2=(vv+vs)nn_{2}=\left(\frac{v}{v+v_{s}}\right) n
If ff is the number of beats heard per second. then f=n1n2f =n_{1}-n_{2}
f=(vvvs)n(vv+vs)n\Rightarrow f=\left(\frac{v}{v-v_{s}}\right) n-\left(\frac{v}{v+v_{s}}\right) n
f=v(v+vs)v(vvs)v2vs2(n)\Rightarrow f=\frac{v\left(v+v_{s}\right)-v\left(v-v_{s}\right)}{v^{2}-v_{s}^{2}}(n)
fv2n\Rightarrow \frac{f v}{2 n} putting v=340m/s,f=3,340Hzv=340 m/s, f=3,340\,Hz we get
vs=340×33×340=1.5m/sv_{s}=\frac{340 \times 3}{3 \times 340}=1.5\, m/s