Solveeit Logo

Question

Question: Two tuning forks, A and B, produce notes of frequencies 258 Hz and 262 Hz. An unknown note sounded w...

Two tuning forks, A and B, produce notes of frequencies 258 Hz and 262 Hz. An unknown note sounded with A produces certain beats. When the same note is sounded with B, the beat frequency gets doubled. The unknown frequency is

A

250 Hz

B

252 Hz

C

254 Hz

D

256 Hz

Answer

254 Hz

Explanation

Solution

Here, υA=258Hz,υB=262Hz\upsilon_{A} = 258Hz,\upsilon_{B} = 262Hz

Let the frequency of unknown tuning fork be υ.\upsilon. It produces υb\upsilon_{b} beats with A and 2υb2\upsilon_{b}with B.

Therefore ,

υAυ=υb\upsilon_{A} - \upsilon = \upsilon_{b} …… (i)

And υBυ=2υb\upsilon_{B} - \upsilon = 2\upsilon_{b} …… (ii)

Subtract (i) from (ii) , we get

υBυA=υb\upsilon_{B} - \upsilon_{A} = \upsilon_{b}

Substituting the given values, we get

262258=υb262 - 258 = \upsilon_{b}

υb=4Hz\upsilon_{b} = 4Hz

From (i), υ=υAυb=(2584)Hz=254Hz\upsilon = \upsilon_{A} - \upsilon_{b} = (258 - 4)Hz = 254Hz