Solveeit Logo

Question

Question: Two trains A and B each of length 400 m are moving on two parallel tracks with a uniform speed 72 km...

Two trains A and B each of length 400 m are moving on two parallel tracks with a uniform speed 72 km h-1 in the same direction with A ahead of B. The driver of B decides to overtake A and accelerates by 1 m s-2. If after 50 s, the guard of B just brushes past A, what was the original distance between them?

A

750 m

B

1000 m

C

1250 m

D

2250 m

Answer

1250 m

Explanation

Solution

For train A.

uA=72kmh1=72×518ms1=20ms1u_{A} = 72kmh^{- 1} = 72 \times \frac{5}{18}ms^{- 1} = 20ms^{- 1}

aA=0,t=50s.a_{A} = 0,t = 50s.

SA=uAt=(20)(50)=1000m\therefore S_{A} = u_{A}t = (20)(50) = 1000m

For train B,

uB=72kmh1=72×518ms1=20ms1u_{B} = 72kmh^{- 1} = 72 \times \frac{5}{18}ms^{- 1} = 20ms^{- 1}

aB=1ms2,t=50sa_{B} = 1ms^{- 2},t = 50s

SB=uBt+12aBt2=(20×50)+12×1×(50)2=2250m\therefore S_{B} = u_{B}t + \frac{1}{2}a_{B}t^{2} = (20 \times 50) + \frac{1}{2} \times 1 \times (50)^{2} = 2250m

Original distance between A and B =SBSA= S_{B} - S_{A}

= 2250 m – 1000 m = 1250m

Alternative solutions

uBA=uBuA=2 ms120 ms1=0 ms1\mathrm { u } _ { \mathrm { BA } } = \mathrm { u } _ { \mathrm { B } } - \mathrm { u } _ { \mathrm { A } } = 2 \mathrm {~ms} ^ { - 1 } - 20 \mathrm {~ms} ^ { - 1 } = 0 \mathrm {~ms} ^ { - 1 } aBA=aBaA=1ms20ms2=1ms2a_{BA} = a_{B} - a_{A} = 1ms^{- 2} - 0ms^{- 2} = 1ms^{- 2}

T = 50 s

SBA=uBAt+12aBAt2=0×50+12×1×(50)2=1250mS_{BA} = u_{BA}t + \frac{1}{2}a_{BA}t^{2} = 0 \times 50 + \frac{1}{2} \times 1 \times (50)^{2} = 1250m