Solveeit Logo

Question

Question: Two thin wire rings each having a radius R are placed at a distance d apart with their axes coincidi...

Two thin wire rings each having a radius R are placed at a distance d apart with their axes coinciding. The charges on the two rings are +q+ q and q- q. The potential difference between the centres of the two rings is.

A

q4πε0[1R1R2+d2]\frac{q}{4\pi\varepsilon_{0}}\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

B

Zero (“kwU;)

C

q2πε0[1R1R2+d2]\frac{q}{2\pi\varepsilon_{0}}\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

D

qR4πε0d2\frac{qR}{4\pi\varepsilon_{0}d^{2}}

Answer

q2πε0[1R1R2+d2]\frac{q}{2\pi\varepsilon_{0}}\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

Explanation

Solution

: V1=q4πε0Rq4πε0R2+d2V_{1} = \frac{q}{4\pi\varepsilon_{0}R} - \frac{q}{4\pi\varepsilon_{0}\sqrt{R^{2} + d^{2}}}

V2=q4πε0R+q4πε0R2+d2V_{2} = - \frac{q}{4\pi\varepsilon_{0}R} + \frac{q}{4\pi\varepsilon_{0}\sqrt{R^{2} + d^{2}}}

V1V2=2q4πε0[1R1R2+d2]\therefore V_{1} - V_{2} = \frac{2q}{4\pi\varepsilon_{0}}\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

V1V2=q2πε0[1R1R2+d2]V_{1} - V_{2} = \frac{q}{2\pi\varepsilon_{0}}\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack