Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

Two thin wire rings each having a radius RR are placed at a distance dd apart with their axes coinciding. The charges on the two rings are +q+ q and q- q. The potential difference between the centres of the two rings is :

A

qR4πε0d2 \frac{qR}{4\,\pi\varepsilon_{0}d^{2}}

B

q2πε0[1R1R2+d2] \frac{q}{2\pi\varepsilon_{0}}\left[\frac{1}{R}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]

C

zero

D

q4πε0[1R1R2+d2] \frac{q}{4\pi\varepsilon_{0}}\left[\frac{1}{R}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]

Answer

q2πε0[1R1R2+d2] \frac{q}{2\pi\varepsilon_{0}}\left[\frac{1}{R}-\frac{1}{\sqrt{R^{2}+d^{2}}}\right]

Explanation

Solution

VAV_A = potential due to charge +q+ q on ring A+A + potential due to charge q- q on ring BB =14πε0(qRqd1),d1=R2+d2= \frac{1}{4\,\pi\varepsilon_{0}}\left(\frac{q}{R}-\frac{q}{d_{1}}\right), d_{1}=\sqrt{R^{2}+d^{2}} =14πε0(qRqR2+d2)...(i)=\frac{1}{4\,\pi \varepsilon _{0}} \left(\frac{q}{R}-\frac{q}{\sqrt{R^{2}+d^{2}}}\right)\,...\left(i\right) Similarly, VB=14πε0(qR+qR2+d2)V_{B}=\frac{1}{4\,\pi \varepsilon _{0}}\left(-\frac{q}{R}+\frac{q}{\sqrt{R^{2}+d^{2}}}\right) Potential difference VAVBV_{A}-V_{B} =14πε0(qRqR2+d2)14πε0(qR+qR2+d2)=\frac{1}{4\,\pi \varepsilon _{0}}\left(\frac{q}{R}-\frac{q}{\sqrt{R^{2}+d^{2}}}\right) -\frac{1}{4\,\pi \varepsilon _{0}} \left(-\frac{q}{R}+\frac{q}{\sqrt{R^{2}+d^{2}}}\right) =14πε0qR+14πε0qR2+d214πε0qR2+d2=\frac{1}{4\,\pi \varepsilon _{0}} \frac{q}{R}+\frac{1}{4\,\pi \varepsilon _{0}} \frac{q}{\sqrt{R^{2}+d^{2}}}-\frac{1}{4\,\pi \varepsilon _{0}} \frac{q}{\sqrt{R^{2}+d^{2}}} =12πε0(qRqR2+d2)=\frac{1}{2\,\pi\varepsilon _{0}}\left(\frac{q}{R}-\frac{q}{\sqrt{R^{2}+d^{2}}}\right)