Solveeit Logo

Question

Question: Two thin rods of length \[L\] lie along x-axis, one between \(x=\dfrac{a}{2}\) to \(x=\dfrac{a}{2}+L...

Two thin rods of length LL lie along x-axis, one between x=a2x=\dfrac{a}{2} to x=a2+Lx=\dfrac{a}{2}+L and other between x=a2x=-\dfrac{a}{2} to x=a2Lx=-\dfrac{a}{2}-L .
Each rod has positive charge QQ distributed uniformly along the length. Find the magnitude of the force which one rod exerts on the other.
A. Q24πϵ0L2logeLaL+a B. Q24πϵ0L2logea(L+a)2(La) C. Q24πϵ0L2loge(L+a)2a(2L+a) D. Q24πϵ0L2loge(L+a)2L(L+2a) \begin{aligned} & \text{A}\text{. }\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}{{\log }_{e}}\dfrac{L-a}{L+a} \\\ & \text{B}\text{. }\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}{{\log }_{e}}a\dfrac{{{\left( L+a \right)}^{2}}}{\left( L-a \right)} \\\ & \text{C}\text{. }\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}{{\log }_{e}}\dfrac{{{\left( L+a \right)}^{2}}}{a\left( 2L+a \right)} \\\ & \text{D}\text{. }\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}{{\log }_{e}}\dfrac{{{\left( L+a \right)}^{2}}}{L\left( L+2a \right)} \\\ \end{aligned}

Explanation

Solution

First calculate the electric field due to the second rod at any point on its axis . then calculate the force due to the second rod on a small element on the first rod. And then integrate it over the full rod to get the force.

Formulas used:
Linear charge density is defined as the charge per unit length, λ=QL\lambda =\dfrac{Q}{L}
Electric field due to a small element dxdx of rod having linear charge density λ\lambda at a point rr is
dE=14πϵ0λdxr2dE=\dfrac{1}{4\pi {{\epsilon }_{0}}}\int{\dfrac{\lambda dx}{{{r}^{2}}}}
The total electric field will be given by integrating over whole rod
E=14πϵ00Lλdxr2E=\dfrac{1}{4\pi {{\epsilon }_{0}}}\int\limits_{0}^{L}{\dfrac{\lambda dx}{{{r}^{2}}}}
Force on an element of charge dqdq due to the electric field EE is
F=dq×EF=dq\times E
1x+pdx=ln(x+p)+c\int{\dfrac{1}{x+p}dx=\ln \left( x+p \right)+c}
lnplnq=lnpq\ln p-\ln q=\ln \dfrac{p}{q} , and
lnp+lnq=ln(pq)\ln p+\ln q=\ln \left( pq \right)

Complete step by step answer:
Linear charge density of both the rods is , λ=QL\lambda =\dfrac{Q}{L}
From the figure The electric field dEdE at a point P situated at a distance rr from the origin at x-axis due to element of charge dqdqin second rod is given by
dE=14πϵ0λdx(x+r)2dE=\dfrac{1}{4\pi {{\epsilon }_{0}}}\int{\dfrac{\lambda dx}{{{\left( -x+r \right)}^{2}}}}

The field due to the whole rod at point P is given by integrating the charge element over the whole rod and is given by

& E=\dfrac{1}{4\pi {{\epsilon }_{0}}}\times \dfrac{Q}{L}\int\limits_{-\dfrac{a}{2}-L}^{-\dfrac{a}{2}}{\dfrac{dx}{{{\left( -x+r \right)}^{2}}}} \\\ & \Rightarrow E=\dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{{{\left( -x+r \right)}^{-2+1}}}{-2+1}\left( -1 \right) \right]_{-\dfrac{a}{2}-L}^{-\dfrac{a}{2}} \\\ & \Rightarrow E=\dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{1}{-x+r} \right]_{-\dfrac{a}{2}-L}^{-\dfrac{a}{2}} \\\ & \Rightarrow E=\dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{1}{-\left( -\dfrac{a}{2} \right)+r}-\dfrac{1}{-\left( -\dfrac{a}{2}-L \right)+r} \right] \\\ & \Rightarrow E=\dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{1}{\dfrac{a}{2}+r}-\dfrac{1}{r+\dfrac{a}{2}+L} \right] \\\ \end{aligned}$$ Now force on a charge element of first rod by the second rod which is at a distance $x$ from the rod is ![](https://www.vedantu.com/question-sets/9c4d2b51-cd60-4f22-963e-a61f6d148632115574085551289567.png) $dF=dq\times E=\lambda dx\times E=\lambda dx\times \dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{1}{\dfrac{a}{2}+x}-\dfrac{1}{x+\dfrac{a}{2}+L} \right]$ The net force on the first rod due to second rod can be by integrating $dF$ over the whole first rod. So $$\begin{aligned} & F=\int\limits_{\dfrac{a}{2}}^{\dfrac{a}{2}+L}{\lambda dx\times \dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{1}{\dfrac{a}{2}+x}-\dfrac{1}{x+\dfrac{a}{2}+L} \right]} \\\ & \Rightarrow F=\int\limits_{\dfrac{a}{2}}^{\dfrac{a}{2}+L}{\dfrac{Q}{L}\times \dfrac{Q}{4\pi {{\epsilon }_{0}}L}\left[ \dfrac{1}{\dfrac{a}{2}+x}-\dfrac{1}{x+\dfrac{a}{2}+L} \right]}dx\left( \because \lambda =\dfrac{Q}{L} \right) \\\ & \Rightarrow F=\int\limits_{\dfrac{a}{2}}^{\dfrac{a}{2}+L}{\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}\left[ \dfrac{1}{\dfrac{a}{2}+x}-\dfrac{1}{x+\dfrac{a}{2}+L} \right]}dx \\\ & \Rightarrow F=\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}\left[ \ln \left( x+\dfrac{a}{2} \right)-\ln \left( x+L+\dfrac{a}{2} \right) \right]_{\dfrac{a}{2}+L}^{\dfrac{a}{2}+L} \\\ \end{aligned}$$ Because $\int{\dfrac{1}{x+p}dx=\ln \left( x+p \right)+c}$ Putting the limits $$\begin{aligned} & F=\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}\left[ \ln \left( \dfrac{a}{2}+L+\dfrac{a}{2} \right)-\ln \left( \dfrac{a}{2}+L+L+\dfrac{a}{2} \right)-\left\\{ \ln \left( \dfrac{a}{2}+\dfrac{a}{2} \right)-\ln \left( \dfrac{a}{2}+L+\dfrac{a}{2} \right) \right\\} \right] \\\ & \Rightarrow F=\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}\left[ \ln \left( a+L \right)-\ln \left( a+2L \right)-\ln a+\ln \left( a+L \right) \right] \\\ & \Rightarrow F=\dfrac{{{Q}^{2}}}{4\pi {{\epsilon }_{0}}{{L}^{2}}}\ln \left[ \dfrac{{{\left( a+L \right)}^{2}}}{a\left( a+2L \right)} \right] \\\ \end{aligned}$$ Because, $\ln p-\ln q=\ln \dfrac{p}{q}\text{ and }\ln p+\ln q=\ln \left( pq \right)$ **So the correct option is Option .C** **Note:** In problems like this see the charge distribution. Whether the charge is distributed over volume or surface area or the length. If the charge is distributed over volume then use volume charge density. If the charge is distributed over the surface then use surface charge density. Igf the charge is distributed over length then use linear charge density. After calculating the charge density you can calculate the electric field or force due to this small element of charge then integrate it to get total Electric field and also total force.