Solveeit Logo

Question

Question: Two thin rings each of radius R are placed at a distance 'd' apart. The charges on the rings are +q ...

Two thin rings each of radius R are placed at a distance 'd' apart. The charges on the rings are +q and -q. The potential difference between their centres will be-

A

qR4πε0d2\frac{qR}{4\pi\varepsilon_{0}d^{2}}

B

q2πε0\frac { \mathrm { q } } { 2 \pi \varepsilon _ { 0 } } [1R1R2+d2]\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

C

Zero

D

q4πε0\frac { \mathrm { q } } { 4 \pi \varepsilon _ { 0 } } [1R1R2+d2]\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

Answer

\frac { \mathrm { q } } { 2 \pi \varepsilon _ { 0 } }$$\left\lbrack \frac{1}{R} - \frac{1}{\sqrt{R^{2} + d^{2}}} \right\rbrack

Explanation

Solution

VA = kqR\frac { \mathrm { kq } } { \mathrm { R } } - kqR2+d2\frac { \mathrm { kq } } { \sqrt { \mathrm { R } ^ { 2 } + \mathrm { d } ^ { 2 } } }

\f0 VA - VB = -

\f0 VA - VB = q2πε0\frac { \mathrm { q } } { 2 \pi \varepsilon _ { 0 } } [1R1R2+d2]\left[ \frac { 1 } { \mathrm { R } } - \frac { 1 } { \sqrt { \mathrm { R } ^ { 2 } + \mathrm { d } ^ { 2 } } } \right]