Solveeit Logo

Question

Physics Question on torque

Two thin circular discs of mass mm and 4m4\, m, having radii of aa and 2a2 a, respectively, are rigidly fixed by a massless, rigid rod of length l=24l=\sqrt{24} a through their centers. This assembly is laid on a firm and flat surface and set rolling without slipping on the surface so that the angular speed about the axis of the rod is ω\omega. The angular momentum of the entire assembly about the point 'O' is L\vec{ L } (see the figure). Which of the following statement(s) is(are) true?

A

The magnitude of the z-component of L\vec{L} is 55ma2ω55\, ma ^{2} \omega

B

The magnitude of angular momentum of center of mass of the assembly about the point OO is 81ma2ω81\, ma ^{2} \omega

C

The center of mass the assembly rotates about the z-axis with an angular speed of ω/5\omega / 5

D

The magnitude of angular momentum of the assembly about its center of mass is 17ma2ω/217\, ma ^{2} \omega / 2

Answer

The magnitude of angular momentum of the assembly about its center of mass is 17ma2ω/217\, ma ^{2} \omega / 2

Explanation

Solution

Top view

ω1=aωvcm=ω1(+45)\omega_{1}=\frac{ a \omega}{\ell} \Rightarrow v _{ cm }=\omega_{1}\left(\ell+\frac{4 \ell}{5}\right)
vcm=aω(95)v _{ cm }=\frac{ a \omega}{\ell}\left(\frac{9 \ell}{5}\right)
vcm=9aω5v _{ cm }=\frac{9 a \omega}{5}
angular momentum of COM about point of
=rcm×(mTvcm)=\vec{r}_{c m} \times\left(m_{T} \vec{v}_{c m}\right)
=rcmmTvcm= r _{ cm } m _{ T } v _{ cm}
=95×(5m)(9aω5)=\frac{9 \ell}{5} \times(5 m )\left(\frac{9 a \omega}{5}\right)
=815amω=\frac{81}{5} a\ell m \omega
=815×a24a×mω=\frac{81}{5} \times a \sqrt{24} a \times m \omega
=815×24a2mω=\frac{81}{5} \times \sqrt{24} a ^{2} m \omega
Angular velocity of COM about zz axis
ω1=aω=aω24a=ω24\omega_{1}=\frac{ a \omega}{\ell}=\frac{ a \omega}{\sqrt{24} a }=\frac{\omega}{\sqrt{24}}
ωz=ω1cosθ\omega_{z}=\omega_{1} \cos \theta
ωz=ω24×(2+a2)\omega_{z}=\frac{\omega}{\sqrt{24}} \times\left(\frac{\ell}{\sqrt{\ell^{2}+ a ^{2}}}\right)
=ω24×(25a2)=\frac{\omega \ell}{\sqrt{24} \times\left(\sqrt{25 a ^{2}}\right)}
ω24a245a=ω5\Rightarrow \frac{\omega \sqrt{24} a }{\sqrt{24} \cdot 5 a }=\frac{\omega}{5}
Angular momentum about. COM=IcmωCOM = I _{ cm } \omega
=(ma22+4m(2a)22)ω=\left(\frac{m a^{2}}{2}+\frac{4 m(2 a)^{2}}{2}\right) \omega
(ma22+8ma2)ω\Rightarrow\left(\frac{m a^{2}}{2}+8 m a^{2}\right) \omega
Lwrtcm=17ma22ωL _{ wrt\,cm }=\frac{17\, ma ^{2}}{2} \omega
angular momentum about OO has component along zz-axis
=LcmcosθLwrtcmsinθ=L_{cm} \cos \theta-L_{wrt\, cm} \sin \theta
=81524mωa2cosθ17ma22ωsinθ=\frac{81}{5} \sqrt{24} m \omega a^{2} \cos \theta-\frac{17 ma ^{2}}{2} \omega \sin \theta
=81524(2+a2)mωa217ma22ω[a2+a2]=\frac{81}{5} \sqrt{24}\left(\frac{\ell}{\sqrt{\ell^{2}+a^{2}}}\right) m \omega a^{2}-\frac{17 m a^{2}}{2} \omega\left[\frac{a}{\sqrt{\ell^{2}+a^{2}}}\right]
81×2425mωa21710ma2ω\Rightarrow \frac{81 \times 24}{25} m \omega a^{2}-\frac{17}{10} m a^{2} \omega
(81×24×217×550)mωa2\Rightarrow\left(\frac{81 \times 24 \times 2-17 \times 5}{50}\right) m \omega a^{2}