Solveeit Logo

Question

Physics Question on Spherical Mirrors

Two thin biconvex lenses have focal lengths f1f _{1} and f2.f _{2} . A third thin biconcave lens has focal length of f3.f_{3} . If the two biconvex lenses are in contact, the total power of the lenses is P1P _{1}. If the first convex lens is in contact with the third lens, the total power is P2P _{2}. If the second lens is in contact with the third lens, the total power is P3P _{3} then

A

P1=f1f2f1f2,P2=f1f3f3f1P _{1}=\frac{ f _{1} f _{2}}{ f _{1}- f _{2}}, P _{2}=\frac{ f _{1} f _{3}}{ f _{3}- f _{1}} and P3=f2f3f3f2P _{3}=\frac{ f _{2} f _{3}}{ f _{3}- f _{2}}

B

P1=f1f2f1f2,P2=f3f1f3+f1P _{1}=\frac{ f _{1}- f _{2}}{ f _{1} f _{2}}, P _{2}=\frac{ f _{3}- f _{1}}{ f _{3}+ f _{1}} and P3=f3f2f2f3P _{3}=\frac{ f _{3}- f _{2}}{ f _{2} f _{3}}

C

P1=f1f2f1f2,P2=f3f1f1f3P _{1}=\frac{ f _{1}- f _{2}}{ f _{1} f _{2}}, P _{2}=\frac{ f _{3}- f _{1}}{ f _{1} f _{3}} and P3=f3f2f2f3P _{3}=\frac{ f _{3}- f _{2}}{ f _{2} f _{3}}

D

P1=f1+f2f1f2,P2=f3f1f1f3P_{1}=\frac{f_{1}+f_{2}}{f_{1} f_{2}}, P_{2}=\frac{f_{3}-f_{1}}{f_{1} f_{3}} and P3=f3f2f2f3P_{3}=\frac{f_{3}-f_{2}}{f_{2} f_{3}}

Answer

P1=f1+f2f1f2,P2=f3f1f1f3P_{1}=\frac{f_{1}+f_{2}}{f_{1} f_{2}}, P_{2}=\frac{f_{3}-f_{1}}{f_{1} f_{3}} and P3=f3f2f2f3P_{3}=\frac{f_{3}-f_{2}}{f_{2} f_{3}}

Explanation

Solution

f1=+f1f _{1}=+ f _{1}
f2=+f2f _{2}=+ f _{2}
f3=f3f _{3}=- f _{3}
1FR=1f1+1f2\frac{1}{F_{R}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
PR=1f1+1f2P_{R}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
P1=1f1+1f2=f2+f1f1f2P_{1}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{f_{2}+f_{1}}{f_{1} f_{2}}
P2=1f1+1f3=f3f1f1f3P_{2}=\frac{1}{f_{1}}+\frac{1}{f_{3}}=\frac{f_{3}-f_{1}}{f_{1} f_{3}}
P2=1f2+1f3=f3f2f2f3P_{2}=\frac{1}{f_{2}}+\frac{1}{f_{3}}=\frac{f_{3}-f_{2}}{f_{2} f_{3}}