Solveeit Logo

Question

Question: Two tangents to the circle \(x ^ { 2 } + y ^ { 2 } = 4\) at the points A and B meet at P (– 4, 0). T...

Two tangents to the circle x2+y2=4x ^ { 2 } + y ^ { 2 } = 4 at the points A and B meet at P (– 4, 0). The area of quadrilateral PAOB, where O is the origin, is

A

4

B

626 \sqrt { 2 }

C

434 \sqrt { 3 }

D

None of these

Answer

434 \sqrt { 3 }

Explanation

Solution

Clearly, sinθ=24=12\sin \theta = \frac { 2 } { 4 } = \frac { 1 } { 2 } ,

θ=30\therefore \theta = 30 ^ { \circ }

So area (POA)=1224sin60( \triangle P O A ) = \frac { 1 } { 2 } \cdot 2 \cdot 4 \cdot \sin 60 ^ { \circ }

\thereforeArea (quadrilateral PAOB)

Trick : Area of quadrilateral =rS1=212=43= r \sqrt { S _ { 1 } } = 2 \sqrt { 12 } = 4 \sqrt { 3 }