Solveeit Logo

Question

Mathematics Question on Conic sections

Two tangents are drawn from a point (2,1)(- 2, -1) to the curve, y2=4x.y^{2}=4x. If α\alpha is the angle between them, then tanα|\tan \alpha| is equal to :

A

13\frac{1}{3}

B

13\frac{1}{\sqrt{3}}

C

3\sqrt{3}

D

33

Answer

33

Explanation

Solution

Let equation of tangent from (2,1)(-2,-1) be y+1=m(x+2)y +1= m ( x +2)
y=mx+(2m1)\Rightarrow y = m x +(2 m -1)
Condition of tangency, C=amC =\frac{ a }{ m }
i.e., 2m1=1m2 m -1=\frac{1}{ m }
2m2m1=0\Rightarrow 2 m ^{2}- m -1=0
(2m+1)(m1)=0(2 m +1)( m -1)=0
m=12,1m =-\frac{1}{2}, 1
Now, tanα=m1m21+m1m2|\tan \alpha|=\left|\frac{ m _{1}- m _{2}}{1+ m _{1} m _{2}}\right|
=1+12112=3=\left|\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right|=3