Solveeit Logo

Question

Physics Question on Moving charges and magnetism

Two tangent galvanometers AA and BB have coils of radii 8cm8 \,cm and 16cm16\, cm respectively and resistance 8Ω8\,\Omega , each. They are connected in parallel with a cell of emf 4V4\, V and negligible internal resistance. The deflections produced in the tangent galvanometers AA and BB are 3030{}^\circ and 6060{}^\circ respectively. If AA has 22 turns, then BB must have

A

18 turns

B

12 turns

C

6 turns

D

2 turns

Answer

12 turns

Explanation

Solution

Current in tangent glavanometer I=2rHμ0NtanθI=\frac{2rH}{{{\mu }_{0}}N}\tan \theta ...(i) Here, R1{{R}_{1}} and R2{{R}_{2}} are in parallel \therefore 1Rnet=1R1+1R2\frac{1}{{{R}_{net}}}=\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} =R2+R1R1R2=8+88×8=\frac{{{R}_{2}}+{{R}_{1}}}{{{R}_{1}}{{R}_{2}}}=\frac{8+8}{8\times 8} Rnet=4Ω{{R}_{net}}=4\,\Omega Hence, I=VR=44=1AI=\frac{V}{R}=\frac{4}{4}=1\,A From E (i), we get rtanθN=μ0I2H\frac{r\tan \theta }{N}=\frac{{{\mu }_{0}}I}{2H} \therefore rAtanθANA=rBtanθBNB\frac{{{r}_{A}}\tan {{\theta }_{A}}}{{{N}_{A}}}=\frac{{{r}_{B}}\tan {{\theta }_{B}}}{{{N}_{B}}} \Rightarrow 8×13×2=16×3NB\frac{8\times 1}{\sqrt{3}\times 2}=\frac{16\times \sqrt{3}}{{{N}_{B}}} \therefore NB=12turns{{N}_{B}}=12\,turns