Solveeit Logo

Question

Question: Two system of rectangular axes have the same origin. If a plane cuts the distance a, b, c from the o...

Two system of rectangular axes have the same origin. If a plane cuts the distance a, b, c from the origin then –

A

1a2\frac { 1 } { a ^ { 2 } } + + 1a2\frac { 1 } { \mathrm { a } ^ { \prime 2 } }= 0

B

1a2\frac { 1 } { a ^ { 2 } } + + + 1a2\frac { 1 } { \mathrm { a } ^ { \prime 2 } } + + = 0

C

1a2\frac { 1 } { a ^ { 2 } } + + 1a2\frac { 1 } { \mathrm { a } ^ { \prime 2 } } += 0

D

1a2\frac { 1 } { a ^ { 2 } }+ 1a2\frac { 1 } { \mathrm { a } ^ { \prime 2 } }= 0

Answer

1a2\frac { 1 } { a ^ { 2 } } + + 1a2\frac { 1 } { \mathrm { a } ^ { \prime 2 } }= 0

Explanation

Solution

The distance of plane + + = 1 or

+ + = 1 from origin will be same

11a2+1 b2+1c2\left| \frac { - 1 } { \sqrt { \frac { 1 } { \mathrm { a } ^ { 2 } } + \frac { 1 } { \mathrm {~b} ^ { 2 } } + \frac { 1 } { \mathrm { c } ^ { 2 } } } } \right| =