Solveeit Logo

Question

Question: Two substances A (t1/2 = 5 min) and B (t1/2 = 15 min) are taken in such a way that initially [A] = 4...

Two substances A (t1/2 = 5 min) and B (t1/2 = 15 min) are taken in such a way that initially [A] = 4[B]. The time after which both the concentration will be equal is : (Assume that reaction is first order)

A

5 min

B

15 min

C

20 min

D

Concentration can never be equal

Answer

15 min

Explanation

Solution

Ct = C0 e-KtC_{t}\text{ = }\text{C}_{0}\text{ }\text{e}^{\text{-Kt}}

According to question

CAt=CBtC_{A't} = C_{B't}

CAe-KAtCBe-KBtC_{A}e^{\text{-}\text{K}_{A}t}\text{= }\text{C}_{B}e^{\text{-}\text{K}_{B}t}

4=e[In25In215]×t4 = e^{\left\lbrack \frac{In2}{5} - \frac{In2}{15} \right\rbrack \times t}

In4=[In25In215]tIn4 = \left\lbrack \frac{In2}{5} - \frac{In2}{15} \right\rbrack t

In(2)2=[In25In215]tIn(2)^{2} = \left\lbrack \frac{In2}{5} - \frac{In2}{15} \right\rbrack t

2In2=[In25In215]t2In2 = \left\lbrack \frac{In2}{5} - \frac{In2}{15} \right\rbrack t

2=[15115]t2 = \left\lbrack \frac{1}{5} - \frac{1}{15} \right\rbrack t

2=215×t2 = \frac{2}{15} \times t

t=15t = 15 minute