Solveeit Logo

Question

Question: Two stones are thrown simultaneously from the same point with equal speed \[{{V}_{0}}\]at an angle \...

Two stones are thrown simultaneously from the same point with equal speed V0{{V}_{0}}at an angle 3030{}^\circ and 6060{}^\circ respectively with the positive axis. The velocity with which the stones move relative to each other in air is.
A)2v0cos15A)2{{v}_{0}}\cos 15{}^\circ
B)2v0sin15B)2{{v}_{0}}\sin 15{}^\circ
C)2v0tan15 !!!! \text{C)2}{{\text{v}}_{\text{0}}}\text{tan15 }\\!\\!{}^\circ\\!\\!\text{ }
D)2v0cot15 !!!! \text{D)2}{{\text{v}}_{\text{0}}}\text{cot15 }\\!\\!{}^\circ\\!\\!\text{ }

Explanation

Solution

Here, two stones are thrown at different angles. The stones are moving in the same direction. Then, the relative velocity is the difference of the velocities of stone 1 and 2. This resultant velocity can be calculated by finding the x component of both stones velocity, and y component of both stones velocity. And then using the x and y component of the resultant velocity, we can find its magnitude.

Formula used:
vx=v cosθ{{v}_{x}}=v\text{ cos}\theta
vy=v sinθ{{v}_{y}}=v\text{ sin}\theta
v=vx2+vy2\left| {\vec{v}} \right|=\sqrt{v_{x}^{2}+v_{y}^{2}}
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
cos(A+B)+cos(AB)=2cosAcosB\cos \left( A+B \right)+\cos \left( A-B \right)=2\cos A\cos B
cos(AB)cos(A+B)=2sinAsinB\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A\sin B
(1cosθ=2sin2θ2)\left( 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2} \right)

Complete answer:
Given,
Stone 1 is thrown at an angle of3030{}^\circ , with velocityv0{{v}_{0}}. Then,
X-axis component of the velocity is,(vx)1=v0cosθ=v0cos30{{\left( {{v}_{x}} \right)}_{1}}={{v}_{0}}\cos \theta ={{v}_{0}}\cos 30{}^\circ
Y-axis component of the velocity is,(vy)1=v0sinθ=v0sin30{{\left( {{v}_{y}} \right)}_{1}}={{v}_{0}}\sin \theta ={{v}_{0}}\sin 30{}^\circ
Stone 2 is thrown at an angle of 6060{}^\circ , with velocityv0{{v}_{0}} Then,
X-axis component of the velocity is, (vx)2=v0cosθ=v0cos60{{\left( {{v}_{x}} \right)}_{2}}={{v}_{0}}\cos \theta ={{v}_{0}}\cos 60{}^\circ
Y-axis component of the velocity is, (vy)2=v0sinθ=v0sin60{{\left( {{v}_{y}} \right)}_{2}}={{v}_{0}}\sin \theta ={{v}_{0}}\sin 60{}^\circ
Since the two stones move in the same direction, the relative velocity is the difference of the two velocities.
Then,
Relative velocity of two stones with respect to x axis,
(Relative velocity)x = v0cos60v0cos30=v0(cos60cos30){{\left( \text{Relative velocity} \right)}_{x}}\text{ = }{{\text{v}}_{0}}\cos 60-{{\text{v}}_{0}}\cos 30={{\text{v}}_{0}}\left( \cos 60-\cos 30 \right)
Relative velocity of two stones with respect to y axis,
(Relative velocity)y = v0sin60v0sin30=v0(sin60sin30){{\left( \text{Relative velocity} \right)}_{y}}\text{ = }{{\text{v}}_{0}}\sin 60-{{\text{v}}_{0}}\sin 30={{\text{v}}_{0}}\left( \sin 60-\sin 30 \right)
Then,
Resultant relative velocity,
(Velocity)resultantv0(cos60cos30)+v0(sin60sin30){{\left( Velocity \right)}_{\text{resultant}}}\text{= }{{\text{v}}_{0}}\left( \cos 60-\cos 30 \right)+{{\text{v}}_{0}}\left( \sin 60-\sin 30 \right)
We have,
Magnitude of a vector v\vec{v} is given by,
v=vx2+vy2\left| {\vec{v}} \right|=\sqrt{v_{x}^{2}+v_{y}^{2}}
Where,
vx=v cosθ{{v}_{x}}=v\text{ cos}\theta , vy=v sinθ{{v}_{y}}=v\text{ sin}\theta and, θ\theta is the angle between vx and v{{\text{v}}_{\text{x}}}\text{ and v}
Then,
(Velocity)resultant=v02(cos60cos30)2+v02(sin60sin30)2\left| {{\left( Velocity \right)}_{\text{resultant}}} \right|=\sqrt{{{v}_{0}}^{2}{{\left( \cos 60-\cos 30 \right)}^{2}}+{{v}_{0}}^{2}{{\left( \sin 60-\sin 30 \right)}^{2}}}
=v0cos260+sin260+cos230+sin230-2cos60cos30-2sin60sin30={{v}_{0}}\sqrt{\text{co}{{\text{s}}^{\text{2}}}\text{60+si}{{\text{n}}^{\text{2}}}\text{60+co}{{\text{s}}^{\text{2}}}\text{30+si}{{\text{n}}^{\text{2}}}\text{30-2cos60cos30-2sin60sin30}}
We have,
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1,
cos(A+B)+cos(AB)=2cosAcosB\cos \left( A+B \right)+\cos \left( A-B \right)=2\cos A\cos B
cos(AB)cos(A+B)=2sinAsinB\cos \left( A-B \right)-\cos \left( A+B \right)=2\sin A\sin B
Then,
(Velocity)resultant=v01+12(cos(6030))=v022cos30\left| {{\left( Velocity \right)}_{\text{resultant}}} \right|={{v}_{0}}\sqrt{1+1-2\left( \cos \left( 60-30 \right) \right)}={{v}_{0}}\sqrt{2-2\cos 30}
=v02(1cos30)={{v}_{0}}\sqrt{2\left( 1-\cos 30 \right)}
=v02×2sin215={{v}_{0}}\sqrt{2\times 2{{\sin }^{2}}15} (1cosθ=2sin2θ2)\left( 1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2} \right)
=v04sin215={{v}_{0}}\sqrt{4{{\sin }^{2}}15}
=2v0sin15=2{{v}_{0}}\sin 15{}^\circ
Therefore, the velocity with which the stones move relative to each other in air is 2v0sin152{{v}_{0}}\sin 15{}^\circ

Answer is option B.

Note:
The velocity of a body with respect to the velocity of another body is known as the relative velocity of the first body with respect to the second.
If VA{{V}_{A}} and VB{{V}_{B}} represent the velocities of two bodies A and B respectively, then the relative velocity of A with respect to B is represented by VAB{{V}_{AB}}.Similarly, the relative velocity of B with respect to A is represented by VBA{{V}_{BA}}.
If the two objects are moving in the same direction, the relative velocity is given by,
VAB=VAVB{{V}_{AB}}={{V}_{A}}-{{V}_{B}}, VBA=VBVA{{V}_{BA}}={{V}_{B}}-{{V}_{A}}
And if the two objects are moving in the opposite direction, then their relative velocity is given by,
VAB=VBA=VA+VB{{V}_{AB}}={{V}_{BA}}={{V}_{A}}+{{V}_{B}}