Solveeit Logo

Question

Physics Question on Motion in a plane

Two stones are projected with same velocity vv at an angle θ&(90θ).\theta \&(90-\theta) . If HH and H1H_{1} are the greatest heights in the two paths, what is the relation between R,HR, H and H1?H_{1} ?

A

R=4HH1R=4\sqrt{H{{H}_{1}}}

B

R=HH1R=\sqrt{H{{H}_{1}}}

C

R=4HH1R=4\,H{{H}_{1}}

D

None of the above

Answer

R=4HH1R=4\sqrt{H{{H}_{1}}}

Explanation

Solution

Range of projectile R=2u2sinθcosθgR =\frac{2 u^{2} \sin \theta \cos \theta}{g} \ldots (1) Height H=u2sin2θ2g H=\frac{u^{2} \sin ^{2} \theta}{2 g} \ldots(2) H1=u2sin2(90θ)2g=u2cos2θ2gH_{1}=\frac{u^{2} \sin ^{2}(90-\theta)}{2 g}=\frac{u^{2} \cos ^{2} \theta}{2 g}\ldots(3) Then, HH1=u2sin2θu2cos2θ2g2gH H_{1}=\frac{u^{2} \sin ^{2} \theta u^{2} \cos ^{2} \theta}{2 g 2 g}\ldots(4) From E (1), we get R2=4u2sin2θu2cos2θ×42g×2gR^{2} =\frac{4 u^{2} \sin ^{2} \theta u^{2} \cos ^{2} \theta \times 4}{2 g \times 2 g} R=16HH1R =\sqrt{16 HH _{1}} [from E (4)](4) ] =4HH1=4 \sqrt{ HH _{1}}