Solveeit Logo

Question

Physics Question on physical world

Two stones are projected with same velocity vv at an angle θ\theta and (90θ)(90-\theta). If HH and H1H_{1} are the greatest heights in the two paths, what is the relation between R,HR , H and H1H_{1} ?

A

R=4HH1R =4 \sqrt{ HH _{1}}

B

R=HH1R =\sqrt{ HH _{1}}

C

R=4HH1R =4 HH _{1}

D

None of the above

Answer

R=4HH1R =4 \sqrt{ HH _{1}}

Explanation

Solution

Range of projectile, R=2u2sinθcosθgR=\frac{2 u^{2} \sin \theta \cos \theta}{g} ...(i) Height H=u2sin2θ2gH=\frac{u^{2} \sin ^{2} \theta}{2 g} ...(ii) H1=u2sin2(90θ)2g=u2cos2θ2gH_{1}=\frac{u^{2} \sin ^{2}\left(90^{\circ}-\theta\right)}{2 g}=\frac{u^{2} \cos ^{2} \theta}{2 g} ...(iii) Then, HH1=u2sin2θu2cos2θ2g2gH H_{1}=\frac{u^{2} \sin ^{2} \theta u^{2} \cos ^{2} \theta}{2 g 2 g} ...(iv) From E (i), we get R2=4u2sin2θu2cos2θ×42g2gR^{2}=\frac{4 u^{2} \sin ^{2} \theta u^{2} \cos ^{2} \theta \times 4}{2 g 2 g} R=16HH1R=\sqrt{16 H H_{1}} [from E (iv)] =4HH1=4 \sqrt{H H_{1}}