Solveeit Logo

Question

Question: Two stars of masses are parts of a binary star system. The radii of their orbits are \(\mathrm { r }...

Two stars of masses are parts of a binary star system. The radii of their orbits are r1\mathrm { r } _ { 1 } and r2\mathrm { r } _ { 2 } respectively, measured from the centre of mass of the system. The magnitude of gravitational force exerts on is

A

m1 m2G(r1+r2)\frac { \mathrm { m } _ { 1 } \mathrm {~m} _ { 2 } \mathrm { G } } { \left( \mathrm { r } _ { 1 } + \mathrm { r } _ { 2 } \right) }

B

C

D

Answer

m1 m2G(r1+r2)\frac { \mathrm { m } _ { 1 } \mathrm {~m} _ { 2 } \mathrm { G } } { \left( \mathrm { r } _ { 1 } + \mathrm { r } _ { 2 } \right) }

Explanation

Solution

The situation is as shown in the figure.

According to Newton’s law of gravitations, gravitational force between two bodies of masses

and m2\mathrm { m } _ { 2 } is

Where r is the distance between the two masses.

Hence, F=Gm1 m2(r1+r2)2\therefore \mathrm { F } = \frac { \mathrm { Gm } _ { 1 } \mathrm {~m} _ { 2 } } { \left( \mathrm { r } _ { 1 } + \mathrm { r } _ { 2 } \right) ^ { 2 } }