Solveeit Logo

Question

Physics Question on Oscillations

Two springs of spring constants k1k_{1} and k2k_{2} are joined in series and a mass mm is attached to them as shown in figure. The time-period of oscillations of the springs is

A

T=πm(k1+k2)k1k2T=\pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}

B

T=2πm(k1+k2)k1k2T=2 \pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}

C

T=2πmk1+k2T=2 \pi \sqrt{\frac{m}{k_{1}+k_{2}}}

D

T=2πm(k1+k2)2k1k2T=2 \pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{2 k_{1} k_{2}}}

Answer

T=2πm(k1+k2)k1k2T=2 \pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}

Explanation

Solution

In series combination spring constants of combination
1ks=1k1+1k2\frac{1}{k_{s}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}
ks=k1k2k1+k2\Rightarrow k_{s}=\frac{k_{1} k_{2}}{k_{1}+k_{2}} Time period of combination
T=2πmks=2πm(k1+k2)k1k2T=2 \pi \sqrt{\frac{m}{k_{s}}}=2 \pi \sqrt{\frac{m\left(k_{1}+k_{2}\right)}{k_{1} k_{2}}}