Solveeit Logo

Question

Physics Question on Electrostatic potential

Two spherical conductors A and B of radii 1 mm and 2mm are separated by a distance of 5 cm and are uniformly charged. If the spheres are connected by a conducting wire then in the equilibrium condition the ratio of electric fields at surfaces of A and B is

A

4:01

B

1:02

C

2:01

D

1:04

Answer

2:01

Explanation

Solution

When the spherical conductors are connected by a conducting wire, charge is redistributed and the spheres attain a common potential VV . \therefore Intensity EA=14π?0QARA2\text{E}_{\text{A}}=\frac{1}{4 \pi ?_{0}}\frac{\text{Q}_{\text{A}}}{\text{R}_{\text{A}}^{2}} or (E)A=1×(C)AV4(π?)0RA2=(4(π?)0(R)A)V4(π?)0RA2=V(R)A\left(\text{E}\right)_{\text{A}}=\frac{1 \times \left(\text{C}\right)_{\text{A}} \text{V}}{4 \left(\pi ?\right)_{0} \text{R}_{\text{A}}^{2}}=\frac{\left(4 \left(\pi ?\right)_{0} \left(\text{R}\right)_{\text{A}}\right) \text{V}}{4 \left(\pi ?\right)_{0} \text{R}_{\text{A}}^{2}}=\frac{\text{V}}{\left(\text{R}\right)_{\text{A}}} Similarly EB=VRB\text{E}_{\text{B}}=\frac{\text{V}}{\text{R}_{\text{B}}} \therefore EAEB=RBRA=21\frac{\text{E}_{\text{A}}}{\text{E}_{\text{B}}}=\frac{\text{R}_{\text{B}}}{\text{R}_{\text{A}}}=\frac{2}{1} .