Solveeit Logo

Question

Question: Two spherical bubbles coalesce. V is the consequent change in volume and S is the total change in su...

Two spherical bubbles coalesce. V is the consequent change in volume and S is the total change in surface area then

A

3 PV + 4ST = 0

B

4PV + 3ST = 0

C

2PV + 3ST = 0

D

3PV + 2ST = 0

Answer

3 PV + 4ST = 0

Explanation

Solution

P1V1 + P2V2 = P3V3

or (P0+4 Tr1)(43πr13)+(P0+4 Tr2)(43πr23)\left( \mathrm { P } _ { 0 } + \frac { 4 \mathrm {~T} } { \mathrm { r } _ { 1 } } \right) \left( \frac { 4 } { 3 } \pi \mathrm { r } _ { 1 } ^ { 3 } \right) + \left( \mathrm { P } _ { 0 } + \frac { 4 \mathrm {~T} } { \mathrm { r } _ { 2 } } \right) \left( \frac { 4 } { 3 } \pi \mathrm { r } _ { 2 } ^ { 3 } \right)

=

or 4T(r12 + r22 - r) = - P0(r13 + r23 – r3)

4T

or 4TS + 3P0V = 0