Solveeit Logo

Question

Physics Question on Oscillations

Two spherical bob of masses MAM_A and MBM_B are hung vertically from two strings of length lAl_A and lBl_B respectively. They are executing SHM with frequency relation fA=2fBf_A=2f_B, Then:

A

lA=lB4l_A=\frac {l_B}{4}

B

lA=4lBl_A=4l_B

C

lA=2lBl_A=2l_B & MA=2MBM_A=2M_B

D

lA=lB2l_A=\frac {l_B}{2} & MA=MB2M_A=\frac {M_B}{2}

Answer

lA=lB4l_A=\frac {l_B}{4}

Explanation

Solution

f=12πglf=\frac {1}{2\pi} \sqrt {\frac gl}

f1lf∝\frac {1}{\sqrt l}

fAfB=lBlA\frac {f_A}{f_B} =\sqrt {\frac {l_B}{l_A}}

2fBfB=lBlA\frac {2f_B}{f_B} =\sqrt {\frac {l_B}{l_A}}

4=lBlA4=\frac {l_B}{l_A}

lA=lB4l_A=\frac {l_B}{4}

So, the correct option is (A): lA=lB4l_A=\frac {l_B}{4}