Solveeit Logo

Question

Physics Question on thermal properties of matter

Two spherical black bodies of radii r1r_1 and r2r_2 at temperatures T1T_1 and T2T_2 respectively, radiate same power. Then r1r2\frac{r_1}{ r_2} must be equal to

A

(T1T2)2\left(\frac{T_{1}}{T_{2}}\right)^{2}

B

(T2T1)2\left(\frac{T_{2}}{T_{1}}\right)^{2}

C

(T1T2)4\left(\frac{T_{1}}{T_{2}}\right)^{4}

D

(T2T1)4\left(\frac{T_{2}}{T_{1}}\right)^{4}

Answer

(T2T1)2\left(\frac{T_{2}}{T_{1}}\right)^{2}

Explanation

Solution

The correct option is(B): (T2T1)2\left(\frac{T_{2}}{T_{1}}\right)^{2}

Power radiated from black body is given by,
E=dQdt=σAT4E = \frac{dQ}{dt} = \sigma AT^{4}
So, E1E2=A1A2×T14T24=r12r22×T14T24\frac{E_{1}}{E_{2}} = \frac{A_{1}}{A_{2}} \times\frac{T_{1^{4}}}{T_{2^{4}}} = \frac{r_{1^{2}}}{r_{2^{2}}} \times \frac{T_{1^{4}}}{T_{2^{4}}}
Here , E1=E2E_{1} = E_{2}
1=r12r22×T14T24\therefore \, \, \, 1 = \frac{r_{1^{2}}}{r_{2^{2}}} \times \frac{T_{1^{4}}}{T_{2^{4}}} or r1r2(T1T2)\frac{r_{1}}{r_{2}} \left(\frac{T_{1}}{T_{2}}\right)