Solveeit Logo

Question

Question: Two spheres each of mass M and radius R/2 are connected with a massless rod of lenght 2R as shown in...

Two spheres each of mass M and radius R/2 are connected with a massless rod of lenght 2R as shown in the figure. What will be the moment of inertia of the system about an axis passing through the centre f one of the spheres and perpendicular to the rod:

A

21/5 MR2

B

2/5 MR2

C

5/2 MR2

D

5/21 MR2.

Answer

21/5 MR2

Explanation

Solution

Moment of inertia of the system about yy'

Iyy' = Moment of inertia of sphere P about yy' + moment of inertia of sphere Q about yy'

Moment of inertia of sphere P about yy'

=25M(R2)2+M(x)2= \frac { 2 } { 5 } M \left( \frac { R } { 2 } \right) ^ { 2 } + M ( x ) ^ { 2 }

[parallel axis theorem]

=25M(R2)2+M(2R)2= \frac { 2 } { 5 } M \left( \frac { R } { 2 } \right) ^ { 2 } + M ( 2 R ) ^ { 2 } =MR210+4MR2= \frac { M R ^ { 2 } } { 10 } + 4 M R ^ { 2 }

Moment of inertia of sphere Q about yy' is

= 25M(R2)2\frac { 2 } { 5 } M \left( \frac { R } { 2 } \right) ^ { 2 }

Now Iyy=MR210+4MR2+25M(R2)2I _ { y y ^ { \prime } } = \frac { M R ^ { 2 } } { 10 } + 4 M R ^ { 2 } + \frac { 2 } { 5 } M \left( \frac { R } { 2 } \right) ^ { 2 } =215MR2= \frac { 21 } { 5 } M R ^ { 2 }