Solveeit Logo

Question

Physics Question on doppler effect

Two sources AA and BB are sending notes of frequency 680Hz680 \,Hz. A listener moves from AA and BB with-a constant velocity uu. If the speed of sound in air is 340ms1340 \, ms^{-1} what must be the value of u so that he hears 1010 beats per second?

A

2.0ms12.0 \, ms^{-1}

B

2.5ms12.5 \, ms^{-1}

C

3.0ms13.0 \, ms^{-1}

D

3.5ms13.5 \, ms^{-1}

Answer

2.5ms12.5 \, ms^{-1}

Explanation

Solution

Listener go from ABA \to B with velocity (u)(u)
let the apparent frequency of sound from source AA by listener
n=nvv0v+vsn' = n \frac{v-v_{0}}{v+v_{s}}
Or n=680340u340+0n' = 680 \frac{340 -u}{340 + 0}
The apparent frequency of sound from source BB by listener
n"=nv+v0vvs=680340+u3400n" = n \frac{v+v_{0}}{v-v_{s} } = 680 \frac{340+u}{340-0}
But listener hear 1010 beats per second.
Or 680340+u340680340u340=10680 \frac{340 + u}{340} - 680 \frac{340 - u }{340} = 10
Or 2340+u340+u=102340 + u - 340 + u = 10
u=2.5ms1u =2.5 \,ms^{-1}