Solveeit Logo

Question

Question: Two solid spherical balls of radius r<sub>1</sub>& r<sub>2</sub>(r<sub>2</sub>\< r<sub>1</sub>), of ...

Two solid spherical balls of radius r1& r2(r2< r1), of density s are tied up with a string and released in a viscous liquid of lesser density r and coefficient of viscosity h, with the string just taut as shown. The terminal velocity of spheres is-

A

29r22gη(σρ)\frac{2}{9}\frac{r_{2}^{2}g}{\eta}(\sigma - \rho)

B

29r12gη(σρ)\frac{2}{9}\frac{r_{1}^{2}g}{\eta}(\sigma - \rho)

C

29(r13+r23)r1+r2(σρ)gη\frac{2}{9}\frac{(r_{1}^{3} + r_{2}^{3})}{r_{1} + r_{2}}\frac{(\sigma - \rho)g}{\eta}

D

29(r13r23)r1r2(σρ)gη\frac{2}{9}\frac{(r_{1}^{3} - r_{2}^{3})}{r_{1} - r_{2}}\frac{(\sigma - \rho)g}{\eta}

Answer

29(r13+r23)r1+r2(σρ)gη\frac{2}{9}\frac{(r_{1}^{3} + r_{2}^{3})}{r_{1} + r_{2}}\frac{(\sigma - \rho)g}{\eta}

Explanation

Solution

at terminal velocity net force is zero.

6ph(r1 + r2) VT+43\frac{4}{3}p (r13+r23)rg=43\frac{4}{3}p (r13 + r23) sg