Solveeit Logo

Question

Chemistry Question on Gas laws

Two soap bubbles of radii xx and yy coalesce to constitute a bubble of radius zz. Then zz is equal to

A

x2+y2\sqrt{x^{2}+y^{2}}

B

x+y\sqrt{x+y}

C

x+yx + y

D

x+y2\frac{x+y}{2}

Answer

x2+y2\sqrt{x^{2}+y^{2}}

Explanation

Solution

Given that two soap bubbles coalesce to constitute a bubble of radius zz. Now from the ideal gas law, we get
pV=p1V1+p2V2p V=p_{1} V_{1}+p_{2} V_{2}
Hence, we have
nRT=n1RT+n2RTn R T=n_{1} R T+n_{2} R T
So, n=n1+n2n=n_{1}+n_{2}
Thus, we have
p1=p0+4Txp_{1}=p_{0}+\frac{4 T}{x},
p2=p0+4Typ_{2}=p_{0}+\frac{4 T}{y},
p=p0+4Tzp=p_{0}+\frac{4 T}{z}
Assuming that the process is taking place in vacuum, we have
Hence, p1=4Tx,p2=4Ty,p=4Tzp_{1}=\frac{4 T}{x}, p_{2}=\frac{4 T}{y}, p=\frac{4 T}{z}
pV=p1V1+p2V2p V=p_{1} V_{1}+p_{2} V_{2}
or 4Tz(43πz3)=4Tx(43πx3)+4Ty(43πy3)\frac{4 T}{z}\left(\frac{4}{3} \pi z^{3}\right)=\frac{4 T}{x}\left(\frac{4}{3} \pi x^{3}\right)+\frac{4 T}{y}\left(\frac{4}{3} \pi y^{3}\right)
Hence z2=x2+y2z^{2}=x^{2}+y^{2}
z=x2+y2\Rightarrow z=\sqrt{x^{2}+y^{2}}