Solveeit Logo

Question

Question: Two smooth beads A and B, free to move on a vertical smooth circular wire, are connected by a string...

Two smooth beads A and B, free to move on a vertical smooth circular wire, are connected by a string. Weights W1, W2 and W are suspended from A, B and a point C of the string respectively. In equilibrium, A and B are in a horizontal line. If BAC=α\angle B A C = \alpha and ABC=β\angle A B C = \beta , then the ratio tanα:tanβ\tan \alpha : \tan \beta is

A

tanαtanβ=WW1+W2 W+W1W2\frac { \tan \alpha } { \tan \beta } = \frac { \mathrm { W } - \mathrm { W } _ { 1 } + \mathrm { W } _ { 2 } } { \mathrm {~W} + \mathrm { W } _ { 1 } - \mathrm { W } _ { 2 } }

B

tanαtanβ=W+W1W2WW1+W2\frac { \tan \alpha } { \tan \beta } = \frac { W + W _ { 1 } - W _ { 2 } } { W - W _ { 1 } + W _ { 2 } }

C

tanαtanβ=W+W1+W2W+W1W2\frac { \tan \alpha } { \tan \beta } = \frac { W + W _ { 1 } + W _ { 2 } } { W + W _ { 1 } - W _ { 2 } }

D

None of these

Answer

tanαtanβ=WW1+W2 W+W1W2\frac { \tan \alpha } { \tan \beta } = \frac { \mathrm { W } - \mathrm { W } _ { 1 } + \mathrm { W } _ { 2 } } { \mathrm {~W} + \mathrm { W } _ { 1 } - \mathrm { W } _ { 2 } }

Explanation

Solution

Resolving forces horizontally and vertically at the points A, B and C respectively, we get

Tcosα=R1sinγT \cos \alpha = R _ { 1 } \sin \gamma .....(i)

T1sinα+W1=R1cosγT _ { 1 } \sin \alpha + W _ { 1 } = R _ { 1 } \cos \gamma .....(ii)

T1cosβ=R2sinγT _ { 1 } \cos \beta = R _ { 2 } \sin \gamma .....(iii)

T2sinβ+W2=R2cosγT _ { 2 } \sin \beta + W _ { 2 } = R _ { 2 } \cos \gamma .....(iv)

T1cosα=T2cosβT _ { 1 } \cos \alpha = T _ { 2 } \cos \beta .....(v)

and T1sinα+T2sinβ=WT _ { 1 } \sin \alpha + T _ { 2 } \sin \beta = W .....(vi)

Using (v), from (i)and (ii), we get, R1=R2R _ { 1 } = R _ { 2 }

∴ From (ii) and (vi), we have

T1sinα+W1=T2sinβ+W2T _ { 1 } \sin \alpha + W _ { 1 } = T _ { 2 } \sin \beta + W _ { 2 }

or T1sinαT2sinβ=W2W1T _ { 1 } \sin \alpha - T _ { 2 } \sin \beta = W _ { 2 } - W _ { 1 } .....(vii)

Adding and subtracting (vi) and (vii), we get

2T1sinα=W+W2W12 T _ { 1 } \sin \alpha = W + W _ { 2 } - W _ { 1 } ......(viii)

2T2sinβ=WW2+W12 T _ { 2 } \sin \beta = W - W _ { 2 } + W _ { 1 } ......(ix)

Dividing (viii) by (ix), we get

T1T2sinαsinβ=WW1+W2W+W1W2\frac { T _ { 1 } } { T _ { 2 } } \cdot \frac { \sin \alpha } { \sin \beta } = \frac { W - W _ { 1 } + W _ { 2 } } { W + W _ { 1 } - W _ { 2 } } or cosβcosαsinαsinβ=WW1+W2W+W1W2\frac { \cos \beta } { \cos \alpha } \cdot \frac { \sin \alpha } { \sin \beta } = \frac { W - W _ { 1 } + W _ { 2 } } { W + W _ { 1 } - W _ { 2 } } (from (v)) or tanαtanβ=WW1+W2W+W1W2\frac { \tan \alpha } { \tan \beta } = \frac { W - W _ { 1 } + W _ { 2 } } { W + W _ { 1 } - W _ { 2 } }