Solveeit Logo

Question

Physics Question on Newtons Laws of Motion

Two small spheres of each charge qq, mass mm and material density dd are suspended from a fixed point with the help of inextensible light thread. When the spheres are in air, the angle between the threads is 9090^{\circ}. When the spheres are suspended in a liquid of density 22d\frac{2}{2} d, the angle between the threads is 6060^{\circ}. The 33 value of dielectric constant of the liquid is

A

636 \sqrt{3}

B

252 \sqrt{5}

C

535 \sqrt{3}

D

727 \sqrt{2}

Answer

636 \sqrt{3}

Explanation

Solution

Key Idea At any instant, Tcosθ=mgT\, \cos\, \theta=m g and Tsinθ=FeT \,\sin \,\theta=F_{e} tanθmg=Fe \Rightarrow \tan \,\theta \,m g=F_{e} Fe=kq2r2F_{e} =\frac{k q^{2}}{r^{2}} r=2lcosθr =2 l \cos \theta [from Fig.] tanθ=Femg\tan \,\theta=\frac{F_{e}}{m g} So, for θ=45\theta=45^{\circ} and ϕ=45\phi=45^{\circ} r=2lv2=2lr=\frac{2 l}{v^{2}}=\sqrt{2} l Fe=Kq22l\Rightarrow F_{e}=\frac{K q^{2}}{2 l} tan45=kq22lmg\tan 45^{\circ}=\frac{k q^{2}}{2 l\, m g} (tan45=1)\left(\because \tan 45^{\circ}=1\right) mg=kq22lm g=\frac{k q^{2}}{2 l} \dots (i) For, θ=30\theta=30^{\circ} and ϕ=60\phi=60^{\circ} r=2l×12=lr=2 l \times \frac{1}{2}=l So , Fe=kq2l2 F_{e}'=\frac{k q^{2}}{l^{2}} tan30=kq2l2mg \Rightarrow \tan 30^{\circ}=\frac{k' q^{2}}{l^{2}-m' g} As, the sphere is suspended in a liquid of density 23d\frac{2}{3} d, then the observed weight of the body. m=V(d2d3)=m3[m=Vd]m'=V\left(d-\frac{2 d}{3}\right)=\frac{m}{3} [\because m=V \cdot d] 13=3kq2l2mg\frac{1}{\sqrt{3}}=\frac{3 k' q^{2}}{l^{2} m g} mg=33kq2l2 \Rightarrow m g=\frac{3 \sqrt{3} k'q^{2}}{l^{2}} So, from E (i) and (ii), we get 33k=k23 \sqrt{3} k' =\frac{k}{2} k=14πε0εr,K=14πε0\Rightarrow k'=\frac{1}{4 \pi \varepsilon_{0} \varepsilon_{r}}, K=\frac{1}{4 \pi \varepsilon_{0}} εr=63\Rightarrow \varepsilon_{r} =6 \sqrt{3}