Solveeit Logo

Question

Physics Question on Youngs double slit experiment

Two slits in Young's experiment have widths in the ratio 1 : 25. The ratio of intensity at the maxima and minima in the interference pattern, ImaxImin \frac{I_{max}}{I_{min}} is

A

49121\frac{49}{121}

B

49\frac{4}{9}

C

94\frac{9}{4}

D

12149\frac{121}{49}

Answer

94\frac{9}{4}

Explanation

Solution

(c): As, intensity II \propto width of slit W
Also, intensity II \propto square of amplitude A
I1I2=W1W2=A12A22\therefore \, \, \, \frac{ I_1}{I_2} = \frac{W_1}{W_2} = \frac{ {A_1}^2}{{A_2}^2}
But W1W2=125\frac{W_1}{W_2} = \frac{1}{25} \, \, \, \, \, (given)
A12A22=125orA1A2=125=15\therefore \frac{ {A_1}^2}{{A_2}^2} = \frac{1}{25} \, \, or \, \, \frac{A_1}{A_2} = \sqrt{\frac{1}{25}} = \frac{1}{5}
ImaxImin=(A1+A2)2(A1A2)2=(A1A2+1)2(A1A21)2\therefore \, \, \, \frac{I_{max}}{I_{min}} = \frac{ (A_1+A_2)^2}{(A_1-A_2)^2} = \frac{ \bigg( \frac{A_1}{A_2}+1\bigg)^2 }{ \bigg( \frac{A_1}{A_2}-1 \bigg)^2}
=(15+1)2(151)2=(65)2(45)2=3616=94= \frac{\bigg( \frac{1}{5}+1 \bigg)^2}{ \bigg(\frac{1}{5}-1 \bigg)^2} = \frac{ \bigg(\frac{6}{5}\bigg)^2}{\bigg(-\frac{4}{5}\bigg)^2} = \frac{36}{16} =\frac{9}{4}