Solveeit Logo

Question

Physics Question on Heat Transfer

Two slabs are of the thicknesses d1d_1 and d2d_2 Their thermal conductivities are K1K_1 and K2K_2 respectively. They are in series. The free ends of the combination of these two slabs are kept at temperatures θ1\theta_1 and θ2\theta_2 . Assume θ1>θ2\theta_1 > \theta_2 .The temperature θ\theta of their common junction is.............

A

K1θ1d2+K2θ2d1K1d2+K2d1\frac{K_1\theta_1d_2+K_2\theta_2d_1}{K_1 d_2+K_2d_1}

B

K1θ1+K2θ2K1+K2\frac{K_1\theta_1+K_2\theta_2}{K_1 +K_2}

C

K1θ1+K2θ2θ1+θ2\frac{K_1\theta_1+K_2\theta_2}{\theta_1 +\theta_2}

D

K1θ1d1+K2θ2d2K1d2+K2d1\frac{K_1\theta_1d_1+K_2\theta_2d_2}{K_1d_2 +K_2d_1}

Answer

K1θ1d2+K2θ2d1K1d2+K2d1\frac{K_1\theta_1d_2+K_2\theta_2d_1}{K_1 d_2+K_2d_1}

Explanation

Solution

For first slab

Heat current, H1=K1(θ1θ)Ad1H_{1}=\frac{K_{1}\left(\theta_{1}-\theta\right) A}{d_{1}}
For second slab,
Heat current, H2=K2(θθ2)Ad2H_{2}=\frac{K_{2}\left(\theta-\theta_{2}\right) A}{d_{2}}
As slabs are in series
H1=H2H_{1}=H_{2}
K1(θ1θ)Ad1=K2(θθ2)Ad2\therefore \frac{K_{1}\left(\theta_{1}-\theta\right) A}{d_{1}}=\frac{K_{2}\left(\theta-\theta_{2}\right) A}{d_{2}}
θ=K1θ1d2+K2θ2d1K2d1+K1d2\Rightarrow \theta=\frac{K_{1} \theta_{1} d_{2}+K_{2} \theta_{2} d_{1}}{K_{2} d_{1}+K_{1} d_{2}}