Solveeit Logo

Question

Physics Question on simple harmonic motion

Two simple harmonic motions are represented by the equations y1=0.1sin(100πt+π3)y_{1}=0.1\,sin\left(100\,\pi t+\frac{\pi}{3}\right) and y2=0.1cosπt.y_{2}=0.1\,cos\,\pi\,t. The phase difference of the velocity of particle 1, with respect to the velocity of particle 2 is :

A

π6\frac{-\pi}{6}

B

π3\frac{\pi}{3}

C

π3\frac{-\pi}{3}

D

π6\frac{\pi}{6}

Answer

π6\frac{-\pi}{6}

Explanation

Solution

Given : y1=0.1sin(100πt+π3)y_{1}=0.1\,sin\left(100\,\pi t+\frac{\pi}{3}\right) dy1dt=v1=0.1×100πcos(100πt+π3)\therefore \frac{dy_{1}}{dt}=v_{1}=0.1\times100\,\pi\,cos\left(100\,\pi t+\frac{\pi}{3}\right) or v1=10πsin(100πt+π3+π2)v_{1}=10\pi\,sin\left(100\,\pi t+\frac{\pi}{3}+\frac{\pi}{2}\right) or v1=10πsin(100πt+5π6)v_{1}=10\pi \,sin\left(100\,\pi t+\frac{5\pi }{6}\right) and y=0.1cosπty=0.1\,cos\,\pi t dy2dt=v2=0.1sinπt=0.1sin(πt+π)\therefore \frac{dy_{2}}{dt}=v_{2}=-0.1\,sin\,\pi t=0.1\,sin \left(\pi t+\pi\right) Hence, phase difference Δϕ=ϕ1ϕ2\Delta\phi=\phi_{1}-\phi_{2} =(100πt+5π6)(πt+π)=\left(100\,\pi t+\frac{5\pi}{6}\right)-\left(\pi t+\pi\right) =5π6π=\frac{5\pi}{6}-\pi =5π6π(att=0)=\frac{5\pi }{6}-\pi \left(at\,t=0\right) =π6=-\frac{\pi}{6}