Solveeit Logo

Question

Physics Question on Oscillations

Two simple harmonic motions are given by x=Asin(ωt+δ)x=A\sin (\omega t+\delta ) and y=Asin(ωt+δ+π2)y=A\sin \left( \omega t+\delta +\frac{\pi }{2} \right) act on a particle simultaneously, then the motion of particle will be

A

circular anti-clockwise

B

elliptical anti-clockwise

C

elliptical clockwise

D

circular clockwise

Answer

circular clockwise

Explanation

Solution

Given, x=Asin(ωt+δ)x=A\sin (\omega t+\delta ) ... (i) and y=Asin(ωt+δ+π2)y=A\sin \left( \omega t+\delta +\frac{\pi }{2} \right) =Acos(ωt+δ)=A\cos (\omega t+\delta ) ... (ii) Squaring and adding Eqs. (i) and (ii), we get x2+y2=A2[sin2(ωt+δ)+cos2(ωt+δ)] x^{2}+y^{2}=A^{2}[\sin ^{2}(\omega t+\delta )+\cos ^{2}(\omega t+\delta )] Or x2+y2=A2x^{2}+y^{2}=A^{2} which is the equation of a circle. Now, At (ωt+δ)=0,x=0,y=0(\omega t+\delta )=0,\,x=0,\,y=0 At (ωt+δ)=π2,x=A,y=0(\omega t+\delta )=\frac{\pi }{2},\,x=A,\,y=0 At (ωt+δ)=π,x=0,y=A(\omega t+\delta )=\pi ,\,x=0,\,y=-A At (ωt+δ)=3π2,x=A,y=0(\omega t+\delta )=\frac{3\pi }{2},\,x=-A,\,y=0 At (ωt+δ)=2π,x=A,y=0(\omega t+\delta )=2\pi ,\,x=A,\,y=0 From the above data, the motion of a particle is a circle transversed in clockwise direction.