Question
Question: Two sides of a triangle are in the ratio 3 : 5 and the third side is 16. If $\Delta$ is the largest ...
Two sides of a triangle are in the ratio 3 : 5 and the third side is 16. If Δ is the largest possible area of the triangle, then 20Δ=

Answer
6
Explanation
Solution
We are given a triangle with sides in the ratio 3:5 (let these be 3x and 5x) and the third side is 16. We wish to maximize the area Δ (and then compute Δ/20).
Step 1. Write the Semiperimeter and Heron Formula
For sides 3x, 5x, and 16:
s=23x+5x+16=4x+8.By Heron’s formula, the area is:
Δ=s(s−3x)(s−5x)(s−16).Substitute:
Δ=(4x+8)(4x+8−3x)(4x+8−5x)(4x+8−16).This simplifies to:
Δ=(4x+8)(x+8)(8−x)(4x−8).Step 2. Simplify the Expression
Factor where possible:
4x+8=4(x+2)and4x−8=4(x−2).Then:
Δ=4(x+2)⋅(x+8)⋅(8−x)⋅4(x−2)=16(x+2)(x−2)(x+8)(8−x).Note that:
(x+2)(x−2)=x2−4,(x+8)(8−x)=64−x2.Thus:
Δ2=16(x2−4)(64−x2).Step 3. Maximize the Area
Let:
f(x)=(x2−4)(64−x2).Introduce u=x2 so that:
f(u)=(u−4)(64−u)=−u2+68u−256.The quadratic −u2+68u−256 is concave downward. Its maximum occurs at:
u=268=34⟹x2=34⟹x=34(since x>0).Thus, maximum value:
fmax=(34−4)(64−34)=30×30=900.Then:
Δmax2=16×900=14400⟹Δmax=14400=120.Step 4. Final Answer
We are asked for:
20Δmax=20120=6.