Solveeit Logo

Question

Question: Two sides of a triangle are in the ratio 3 : 5 and the third side is 16. If $\Delta$ is the largest ...

Two sides of a triangle are in the ratio 3 : 5 and the third side is 16. If Δ\Delta is the largest possible area of the triangle, then Δ20=\frac{\Delta}{20}=

Answer

6

Explanation

Solution

We are given a triangle with sides in the ratio 3:53:5 (let these be 3x3x and 5x5x) and the third side is 1616. We wish to maximize the area Δ\Delta (and then compute Δ/20\Delta/20).

Step 1. Write the Semiperimeter and Heron Formula

For sides 3x3x, 5x5x, and 1616:

s=3x+5x+162=4x+8.s = \frac{3x + 5x + 16}{2} = 4x + 8.

By Heron’s formula, the area is:

Δ=s(s3x)(s5x)(s16).\Delta = \sqrt{s(s-3x)(s-5x)(s-16)}.

Substitute:

Δ=(4x+8)(4x+83x)(4x+85x)(4x+816).\Delta = \sqrt{(4x+8)(4x+8-3x)(4x+8-5x)(4x+8-16)}.

This simplifies to:

Δ=(4x+8)(x+8)(8x)(4x8).\Delta = \sqrt{(4x+8)(x+8)(8-x)(4x-8)}.

Step 2. Simplify the Expression

Factor where possible:

4x+8=4(x+2)and4x8=4(x2).4x+8 = 4(x+2)\quad\text{and}\quad 4x-8 = 4(x-2).

Then:

Δ=4(x+2)(x+8)(8x)4(x2)=16(x+2)(x2)(x+8)(8x).\Delta = \sqrt{4(x+2) \cdot (x+8) \cdot (8-x) \cdot 4(x-2)} = \sqrt{16\,(x+2)(x-2)(x+8)(8-x)}.

Note that:

(x+2)(x2)=x24,(x+8)(8x)=64x2.(x+2)(x-2) = x^2-4,\quad (x+8)(8-x) = 64 - x^2.

Thus:

Δ2=16(x24)(64x2).\Delta^2 = 16\,(x^2-4)(64-x^2).

Step 3. Maximize the Area

Let:

f(x)=(x24)(64x2).f(x) = (x^2-4)(64-x^2).

Introduce u=x2u = x^2 so that:

f(u)=(u4)(64u)=u2+68u256.f(u) = (u-4)(64-u) = -u^2 + 68u - 256.

The quadratic u2+68u256-u^2 +68u -256 is concave downward. Its maximum occurs at:

u=682=34x2=34x=34  (since x>0).u = \frac{68}{2} = 34 \quad \Longrightarrow \quad x^2 = 34 \quad \Longrightarrow \quad x = \sqrt{34} \;(\text{since } x>0).

Thus, maximum value:

fmax=(344)(6434)=30×30=900.f_{\max} = (34-4)(64-34) = 30 \times 30 = 900.

Then:

Δmax2=16×900=14400Δmax=14400=120.\Delta_{\max}^2 = 16 \times 900 = 14400 \quad \Longrightarrow \quad \Delta_{\max} = \sqrt{14400} = 120.

Step 4. Final Answer

We are asked for:

Δmax20=12020=6.\frac{\Delta_{\max}}{20} = \frac{120}{20} = 6.