Solveeit Logo

Question

Question: Two sides of a triangle are 237 and 158 feet and the contained angle is \({{66}^{\circ }}{{40}^{'}}\...

Two sides of a triangle are 237 and 158 feet and the contained angle is 6640{{66}^{\circ }}{{40}^{'}}; find the base and the other angles, having given log2=.3013,log79=1.89763\log 2=.3013,\log 79=1.89763, log1.36383=23.35578,logcot3320=10.18197,logsin3320=9.73998\log 1.36383=23.35578,\log \cot {{33}^{\circ }}{{20}^{'}}=10.18197,\log \sin {{33}^{\circ }}{{20}^{'}}=9.73998,logtan1654=9.48262\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262,logtan1655=9.48308,logsec1654=10.01917,logsec1655=10.01921\log \tan {{16}^{\circ }}{{55}^{'}}=9.48308,\log \sec {{16}^{\circ }}{{54}^{'}}=10.01917,\log \sec {{16}^{\circ }}{{55}^{'}}=10.01921 $$$$

Explanation

Solution

We use the law of tangent tan(BC2)=bcb+ccotA2\tan \left( \dfrac{B-C}{2} \right)=\dfrac{b-c}{b+c}\cot \dfrac{A}{2} where we assign b=237b=237feet and c=158c=158feet,A=6640A={{66}^{\circ }}{{40}^{'}} and then take logarithm to get the value of BC2\dfrac{B-C}{2}. We then find B+C2=180A2\dfrac{B+C}{2}=\dfrac{180-A}{2}. We solve for B,CB,C and obtain them. We use the formula cosBC2=b+casinA2\cos \dfrac{B-C}{2}=\dfrac{b+c}{a}\sin \dfrac{A}{2} and take logarithm to get aa. We assume infinitesimal change in the functions logtanx,logsecx\log \tan x,\log \sec x as constant. $$$$

Complete step by step answer:
We know from the law of tangent that that if there are the measurement of three angles are denoted as A,B,CA,B,C of triangle ABC and the length their opposite sides are denoted as a,b,ca,b,c respectively , then we write the relation among them as
tan(BC2)=bcb+ccotA2\tan \left( \dfrac{B-C}{2} \right)=\dfrac{b-c}{b+c}\cot \dfrac{A}{2}
Let us assign b=237b=237feet and c=158c=158. The angle contained between the sides whose lengths are b,cb,c is A=6640A={{66}^{\circ }}{{40}^{'}} as given in the question . We put these values and proceed
tan(BC2)=237158237+158cot(66402)=15cot(3320)=210cot(3320)\tan \left( \dfrac{B-C}{2} \right)=\dfrac{237-158}{237+158}\cot \left( \dfrac{{{66}^{\circ }}{{40}^{'}}}{2} \right)=\dfrac{1}{5}\cot \left( {{33}^{\circ }}{{20}^{'}} \right)=\dfrac{2}{10}\cot \left( {{33}^{\circ }}{{20}^{'}} \right)
We take logarithm both side and get ,

& \log \tan \left( \dfrac{B-C}{2} \right)=\log \left( \dfrac{2}{10}\cot \left( {{33}^{\circ }}{{20}^{'}} \right) \right) \\\ & =\log 2-\log 10+\log \cot \left( {{33}^{\circ }}{{20}^{'}} \right) \\\ & =.30103-1+10.18197=9.48300 \\\ \end{aligned}$$ We are given the data in the question $\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262,\log \tan {{16}^{\circ }}{{55}^{'}}=9.48308$. We approximate the change in $f\left( x \right)=\log \tan x$ to be constant for very small value like $dx={{1}^{'}}$. We can see the change as $dx={{1}^{'}}={{60}^{''}}$ leads to change in value of $\log \tan x$ as $\log \tan {{16}^{\circ }}{{55}^{'}}-\log \tan {{16}^{\circ }}{{54}^{'}}=9.48308-9.48262=0.00046$. The change in $\log \tan x$ with respect to change in $x$ from $\log \tan {{16}^{\circ }}{{54}^{'}}=9.48262$ to $\log \tan \left( \dfrac{B-C}{2} \right)=9.483$ is $9.483-9.48262=0.00038$. The equivalent change in $x$ for change of $0.00038$ is $\dfrac{0.00038}{0.00046}\times {{60}^{''}}={{50}^{''}}$. So we have $$\dfrac{B-C}{2}={{16}^{\circ }}{{54}^{'}}+{{50}^{''}}={{16}^{\circ }}{{54}^{'}}{{50}^{''}}.....(1)$$ We know that $A+B+C={{180}^{\circ }}$. So we put the required value and obtain , $$\dfrac{B+C}{2}=\dfrac{180-A}{2}={{56}^{\circ }}{{40}^{'}}....(2)$$ We solve the linear pair of equation (1) and (2) and the measurement of the angles $B={{73}^{\circ }}{{34}^{'}}{{50}^{''}},C={{39}^{\circ }}{{45}^{'}}{{10}^{''}}$ We know dor the law of sine and cosine are interrelated as $$\cos \dfrac{B-C}{2}=\dfrac{b+c}{a}\sin \dfrac{A}{2}$$ We put the given values , the obtained value $\dfrac{B-C}{2}$ and get , $$\begin{aligned} & \cos {{16}^{\circ }}{{54}^{'}}{{50}^{''}}=\dfrac{237+158}{a}\sin \dfrac{{{66}^{\circ }}{{40}^{'}}}{2} \\\ & \Rightarrow a=395\sin {{33}^{\circ }}{{20}^{'}}\sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}} \\\ & \Rightarrow a=\dfrac{79\times 10}{2}\sin {{33}^{\circ }}{{20}^{'}}\sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}} \\\ \end{aligned}$$ We take logarithm both side and get , $$\Rightarrow \log a=\log 79+\log 10-\log 2+\log \sin {{33}^{\circ }}{{20}^{'}}+\log \sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}}...(3)$$ We again denote $f\left( x \right)=\log \sec x$. We can assume that for every small change in $x$ the change in $f\left( x \right)$ will be constant. So we have data from the question $\log \sec {{16}^{\circ }}{{54}^{'}}=10.01917,\log \sec {{16}^{\circ }}{{55}^{'}}=10.01921$. So the change in $x={{1}^{'}}={{60}^{''}}$ is equivalent to change in $f\left( x \right)=\log \sec x$ as $\log \sec {{16}^{\circ }}{{55}^{'}}-\log \sec {{16}^{\circ }}{{54}^{'}}=10.01921-10.01917=0.00004$. So the change $x={{50}^{''}}$ will be $\dfrac{{{50}^{''}}}{{{60}^{''}}}\times .00004=0.00003$. So we have $$\log \sec {{16}^{\circ }}{{54}^{'}}{{50}^{''}}=10.0197+0.00003=10.01920$$. So now we proceed in equation(3) $$\begin{aligned} & \Rightarrow \log a=2.89763-.30103+9.73998+10.01920 \\\ & \Rightarrow \log a=\text{23}\text{.35578} \\\ \end{aligned}$$ So we got $a=1.3683$feet. $$$$ **Note:** We assumed the changes in functions $\log \tan x,\log \sec x$ as constant because the changes in $x$ were infinitesimally small. When the change is infinitesimally small we can find the rate of change of functions using derivatives.