Solveeit Logo

Question

Question: Two short magnetic dipoles $m_1$ and $m_2$ each having magnetic moment of 1 A $m^2$ are placed at po...

Two short magnetic dipoles m1m_1 and m2m_2 each having magnetic moment of 1 A m2m^2 are placed at point OO and PP respectively. The distance between OPOP is 1 m. The torque experienced by the magnetic dipole m2m_2 due to the presence of m1m_1 is __________ ×107\times 10^{-7}N m

Answer

1

Explanation

Solution

The torque on a magnetic dipole m\vec{m} in an external magnetic field B\vec{B} is given by τ=m×B\vec{\tau} = \vec{m} \times \vec{B}. The magnetic field B\vec{B} at a point P, at a distance rr from a short magnetic dipole m1\vec{m_1} at O, is given by: B=μ04π(3(m1r)rr5m1r3)\vec{B} = \frac{\mu_0}{4\pi} \left( \frac{3(\vec{m_1} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{m_1}}{r^3} \right) where r\vec{r} is the position vector from O to P.

Assuming m1\vec{m_1} is along the y-axis and P is on the x-axis, m1=m1j^\vec{m_1} = m_1 \hat{j} and r=ri^\vec{r} = r \hat{i}. The dot product m1r=0\vec{m_1} \cdot \vec{r} = 0. Thus, the magnetic field at P is: B=μ0m14πr3j^\vec{B} = -\frac{\mu_0 m_1}{4\pi r^3} \hat{j} If m2\vec{m_2} is along the x-axis, m2=m2i^\vec{m_2} = m_2 \hat{i}. The torque on m2m_2 is: τ2=m2×B=(m2i^)×(μ0m14πr3j^)=μ0m1m24πr3(i^×j^)=μ0m1m24πr3k^\vec{\tau_2} = \vec{m_2} \times \vec{B} = (m_2 \hat{i}) \times \left(-\frac{\mu_0 m_1}{4\pi r^3} \hat{j}\right) = -\frac{\mu_0 m_1 m_2}{4\pi r^3} (\hat{i} \times \hat{j}) = -\frac{\mu_0 m_1 m_2}{4\pi r^3} \hat{k} The magnitude of the torque is τ2=μ0m1m24πr3|\vec{\tau_2}| = \frac{\mu_0 m_1 m_2}{4\pi r^3}.

Given m1=1m_1 = 1 A m2m^2, m2=1m_2 = 1 A m2m^2, r=1r = 1 m, and μ0=4π×107\mu_0 = 4\pi \times 10^{-7} T m/A. τ2=(4π×107)×1×14π×13=107 N m|\vec{\tau_2}| = \frac{(4\pi \times 10^{-7}) \times 1 \times 1}{4\pi \times 1^3} = 10^{-7} \text{ N m} The value to fill in the blank is 1.