Solveeit Logo

Question

Physics Question on Oscillations

Two SHM are represented by the equations x1=20sin[5πt+π4]x_{1}=20 \sin \left[5 \pi t+\frac{\pi}{4}\right] and x2=10(sin5πt+3cos5πt)x_{2}=10(\sin 5 \pi t+\sqrt{3} \cos 5 \pi t) The ratio of the amplitudes of the two motions is

A

0.5

B

1

C

0.25

D

32\frac{\sqrt{3}}{2}

Answer

1

Explanation

Solution

For SHM (1), x1=20sin(5πt+π4)x _{1}=20 \sin \left(5 \pi t +\frac{\pi}{4}\right) Its amplitude, A1=20A_{1}=20 For SHM (2), x2=10[sin5πt+3cos5πt]x _{2} =10[\sin 5 \pi t +\sqrt{3} \cos 5 \pi t ] =10×2(sin5πt2+32cos5πt)=10 \times 2\left(\frac{\sin 5 \pi t }{2}+\frac{\sqrt{3}}{2} \cos 5 \pi t \right) =20(sin5πtcosπ3+sinπ3cos5πt)=20\left(\sin 5 \pi t \cdot \cos \frac{\pi}{3}+\sin \frac{\pi}{3} \cos 5 \pi t \right) =20sin(5πt+π3)=20 \sin \left(5 \pi t +\frac{\pi}{3}\right) It's amplitude, A2=20A_{2}=20 A1A2=2020=1\therefore \frac{A_{1}}{A_{2}}=\frac{20}{20}=1