Solveeit Logo

Question

Mathematics Question on Second Order Derivative

Two ships AA and BB are sailing straight away from a fixed point OO along routes such that ?AOB?\,AOB is always 120120^{\circ}. At a certain instance, OA=8km,OB=6kmOA = 8\, km, OB = 6\, km and the ship AA is sailing at the rate of 20km/hr20 km/hr while the ship BB sailing at the rate of 30km/hr30 km/hr. Then the distance between AA and BB is changing at the rate (in km/hr) :

A

26037\frac{260}{\sqrt{37}}

B

28037\frac{280}{\sqrt{37}}

C

8037\frac{80}{\sqrt{37}}

D

18037\frac{180}{\sqrt{37}}

Answer

26037\frac{260}{\sqrt{37}}

Explanation

Solution

Let at any time t OA=xOB=yOA = x \quad OB = y dxdt=20dxdt=30\frac{dx}{dt} = 20\quad\frac{dx}{dt} = 30 cos(120)=x2+y2AB22xycos\left(120^{\circ}\right) = \frac{x^{2}+y^{2}-AB^{2}}{2xy} AB2=x2+y2+xy(1)AB^{2} = x^{2} + y^{2} + xy\quad\quad\ldots\left(1\right) D.w.R. To . t 2(AB)ddt(AB)=2xdxdt+2ydydt+2dydt+ydxdt(1)2\left(AB\right) \frac{d}{dt} \left(AB\right) = 2x \frac{dx}{dt} +2y \frac{dy}{dt}+2 \frac{dy}{dt}+y \frac{dx}{dt}\quad \quad \ldots \left(1\right) when x=8y=6x = 8 \,y = 6 then AB=148AB = \sqrt{148} from (1)\left(1\right) So ddt(AB)=(2xdxdt+2ydydt+xdydt+ydxdt)2AB\frac{d}{dt} \left(AB\right) = \frac{\left(2x \frac{dx}{dt} +2y \frac{dy}{dt}+ \frac{xdy}{dt}+y \frac{dx}{dt}\right)}{2\,AB} use x=8y=6AB=148x = 8 \quad y = 6 \,AB = \sqrt{148} ddt(AB)=260/37\frac{d}{dt} \left(AB\right) =260 / \sqrt{37}