Solveeit Logo

Question

Question: Two sets each of \(20\) observations, have the same standard deviation \(5\). The first set has a me...

Two sets each of 2020 observations, have the same standard deviation 55. The first set has a mean 1717 and second a mean 2222. Then the standard deviation of the set obtained by combining the given two sets is
(A) 5{\text{(A) 5}}
(B) 4.5{\text{(B) 4}}{\text{.5}}
(C) 5.59{\text{(C) 5}}{\text{.59}}
(D) 4{\text{(D) 4}}

Explanation

Solution

Here in this question as known the values of mean, standard deviation and the number of terms in both the distribution, we will substitute all the values in the combined standard deviation formula to get the required answer.

Formula used: Combined S.D = n1σ12+n2σ22n1 + n2+n1n2(xˉ1-xˉ2)2(n1+n2)2{\text{Combined S}}{\text{.D = }}\sqrt {\dfrac{{{{\text{n}}_{\text{1}}}{{{\sigma}}_{\text{1}}}^{\text{2}}{\text{+}}{{\text{n}}_{\text{2}}}{{{\sigma }}_{\text{2}}}^{\text{2}}}}{{{{\text{n}}_{\text{1}}}{\text{ + }}{{\text{n}}_{\text{2}}}}}{\text{+}}\dfrac{{{{\text{n}}_{\text{1}}}{{\text{n}}_{\text{2}}}{{{\text{(}}{{{{\bar x}}}_{\text{1}}}{\text{-}}{{{{\bar x}}}_{\text{2}}}{\text{)}}}^{\text{2}}}}}{{{{{\text{(}}{{\text{n}}_{\text{1}}}{\text{+}}{{\text{n}}_{\text{2}}}{\text{)}}}^{\text{2}}}}}}
Where S.D{\text{S}}{\text{.D}} stands for the standard deviation

Complete step-by-step solution:
Let the number of terms in both the distribution be n1{n_1} and n2{n_2}, since the total number of observations are same in both the sets,
n1=20{n_1} = 20 and n2=20{n_2} = 20
Let σ1{\sigma _1} and σ2{\sigma _2} be the standard deviation of both the sets, since the standard deviation is same for both the sets, it can be written as:
σ1=17{\sigma _1} = 17 and σ2=22{\sigma _2} = 22
Let xˉ1{{{\bar x}}_{\text{1}}} and xˉ2{{{\bar x}}_2} be the mean of both the distributions therefore,
xˉ1=17{{{\bar x}}_{\text{1}}} = 17 and xˉ2=22{{{\bar x}}_2} = 22
On substituting all the values in the formula, we get:
Combined S.D = 20×52 + 20×5220+20 + 20×20×(17 - 22)2(20 + 20)2{\text{Combined S}}{\text{.D = }}\sqrt {\dfrac{{{\text{20}} \times {5^{\text{2}}}{\text{ + 20}} \times {5^{\text{2}}}}}{{20 + 20}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times {{{\text{(17 - 22)}}}^{\text{2}}}}}{{{{{\text{(20 + 20)}}}^{\text{2}}}}}}
On squaring the terms we get:
20×25 + 20×2520+20 + 20×20×( - 5)2(20 + 20)2\Rightarrow \sqrt {\dfrac{{{\text{20}} \times 25{\text{ + 20}} \times 25}}{{20 + 20}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times {{{\text{( - 5)}}}^{\text{2}}}}}{{{{{\text{(20 + 20)}}}^{\text{2}}}}}}
Let us add the denominator term and we get
20×25 + 20×2540 + 20×20×25402\Rightarrow \sqrt {\dfrac{{{\text{20}} \times 25{\text{ + 20}} \times 25}}{{40}}{\text{ + }}\dfrac{{{\text{20}} \times 20 \times 25}}{{{\text{4}}{{\text{0}}^{\text{2}}}}}}
Let us multiply the numerator term and we can write it as,
500+50040 + 25×400402\Rightarrow \sqrt {\dfrac{{500 + 500}}{{40}}{\text{ + }}\dfrac{{{\text{25}} \times 400}}{{{\text{4}}{{\text{0}}^{\text{2}}}}}}
On adding the numerator term and we get,
100040 + 100001600\Rightarrow \sqrt {\dfrac{{1000}}{{40}}{\text{ + }}\dfrac{{10000}}{{1600}}}
Let us divide the term and we get
25 + 254\Rightarrow \sqrt {{\text{25 + }}\dfrac{{25}}{{\text{4}}}}
On taking the L.C.M we get:
25×4+254\Rightarrow \sqrt {\dfrac{{25 \times 4 + 25}}{4}}
This can be simplified as:
1254\Rightarrow \sqrt {\dfrac{{125}}{4}}
Since the square root of 44 is 22 we take it out of the root part.
12125\Rightarrow \dfrac{1}{2}\sqrt {125}
Now the root value of 125\sqrt {125} is 11.1811.18 therefore,
11.182\Rightarrow \dfrac{{11.18}}{2}
5.59\Rightarrow 5.59
Combined S.D = 5.59{\text{Combined S}}{\text{.D = 5}}{\text{.59}}, which is the required answer.

Therefore, the correct option is (C){\text{(C)}} which is 5.595.59.

Note: The combined Standard deviation of two distributions would always be a very close answer to the original standard deviations of the two sets.
Also, in statistics there is a relation between the variance and standard deviation of a distribution. The standard deviation is the square root of the variance, it can be expressed as:
Standard deviation = variance{\text{Standard deviation = }}\sqrt {{\text{variance}}}