Solveeit Logo

Question

Question: Two satellites revolve around a planet in coplanar circular orbits in anticlockwise direction. Their...

Two satellites revolve around a planet in coplanar circular orbits in anticlockwise direction. Their period of revolutions are 1 hour and 8 hours respectively. The radius of the orbit of nearer satellite is 2 x 10³ km. The angular speed of the farther satellite as observed from the nearer satellite at the instant when both the satellites are closest is πx\frac{\pi}{x} rad h⁻¹ where x is ________.

Answer

3

Explanation

Solution

  1. Determine R₂ using Kepler’s Third Law:
    Since T22T12=R23R13\frac{T_2^2}{T_1^2} = \frac{R_2^3}{R_1^3}, with T2=8T_2=8 hr, T1=1T_1=1 hr, and R1=2×103kmR_1=2\times10^3\, \text{km}:

    8212=R23(2×103)3    R23=64×(2×103)3.\frac{8^2}{1^2} = \frac{R_2^3}{(2\times10^3)^3} \implies R_2^3 = 64 \times (2\times10^3)^3.

    Taking cube roots,

    R2=4×(2×103)=8×103km.R_2 = 4\times (2\times10^3) = 8\times10^3\, \text{km}.
  2. Calculate Speeds:
    For circular motion, v=2πRTv=\frac{2\pi R}{T}.
    Nearest satellite:

    v1=2π(2×103)1=4π×103km/hr.v_1=\frac{2\pi (2\times10^3)}{1}=4\pi\times10^3\, \text{km/hr}.

    Farther satellite:

    v2=2π(8×103)8=2π×103km/hr.v_2=\frac{2\pi (8\times10^3)}{8}=2\pi\times10^3\, \text{km/hr}.
  3. Find the Relative Speed:

    vrel=v2v1=2π×1034π×103=2π×103km/hr.v_{\text{rel}} = |v_2-v_1| = |2\pi\times10^3 - 4\pi\times10^3| = 2\pi\times10^3\, \text{km/hr}.
  4. Relative Angular Speed:
    The distance between the satellites when closest is

    Rsep=R2R1=(8×1032×103)=6×103km.R_{\text{sep}} = R_2-R_1 = (8\times10^3 - 2\times10^3) = 6\times10^3\, \text{km}.

    Thus,

    ωrel=vrelRsep=2π×1036×103=π3rad/hr.\omega_{\text{rel}}=\frac{v_{\text{rel}}}{R_{\text{sep}}}=\frac{2\pi\times10^3}{6\times10^3}=\frac{\pi}{3}\, \text{rad/hr}.

    This expression is given as πx\frac{\pi}{x} rad/hr, so x=3x=3.