Solveeit Logo

Question

Physics Question on Gravitation

Two satellites AA and BB go round a planet PP in circular orbits having radii 4R4R and RR respectively. If the speed of the satellite AA is 3υ3\upsilon, the speed of satellite BB will be

A

12υ12 \upsilon

B

6υ6 \upsilon

C

(4/3)υ(4/3)\upsilon

D

(3/2)υ(3/2)\upsilon

Answer

6υ6 \upsilon

Explanation

Solution

Orbit speed of the satellite around the earth is υ=GMr\upsilon = \sqrt{ \frac{ GM}{ r}} where, G = Universal gravitational constant M = Mass of earth r = Radius of the orbit of the satellite For satellite A rA=4R,vA=3Vr_A = 4 R , v_A = 3V υA=GMrA {\upsilon}_A = \sqrt{ \frac{GM}{ r_A}} ...(i) For satellite B rB=R,vB=?r_B= R , v_ B =? υB=GMrB {\upsilon}_B = \sqrt{ \frac{GM}{ r_B}} ...(ii) Dividing equation (ii) by equation (i), we get υBυA=rArB\therefore \, \, \, \, \frac{ {\upsilon}_B}{ {\upsilon}_A}= \sqrt{\frac{r_A}{r_B}} or υB=υArArB{\upsilon}_B = {\upsilon}_A \sqrt{\frac{ r_A}{ r_B}} Substituting the given values, we get υB=3V4RR\upsilon_B = 3 V \sqrt{\frac{4R}{ R}} \, \, \, or υB=6V\, \, \, \upsilon_B = 6V