Solveeit Logo

Question

Question: Two samples X and Y contain equal amount of radioactive substances. If \(\frac{1^{th}}{16}\) of the ...

Two samples X and Y contain equal amount of radioactive substances. If 1th16\frac{1^{th}}{16} of the sample X and 1th256\frac{1^{th}}{256} of the sample Y, remain after 8 hours, then the ratio of half life periods of X and Y is.

A

2: 1

B

1 : 2

C

1 : 4

D

4 : 1

Answer

2: 1

Explanation

Solution

:

As NN0=(12)n\frac{N}{N_{0}} = \left( \frac{1}{2} \right)^{n}

Where, number of half lives, n=tTn = \frac{t}{T}

T is the half life period

For sample X

116=(12)8/TXor(12)4=(12)8/TX\frac{1}{16} = \left( \frac{1}{2} \right)^{8/T_{X}}or\left( \frac{1}{2} \right)^{4} = \left( \frac{1}{2} \right)^{8/T_{X}}

4=8TX\Rightarrow 4 = \frac{8}{T_{X}}…… (i)

For sample Y

(1256)=(12)8/TY\left( \frac{1}{256} \right) = \left( \frac{1}{2} \right)^{8/T_{Y}}

Or (12)8=(12)8/Ty\left( \frac{1}{2} \right)^{8} = \left( \frac{1}{2} \right)^{8/T_{y}}

8=8TY8 = \frac{8}{T_{Y}}……….(ii)

Dividing (i) by (ii) we get

}{\frac{1}{2} = \frac{T_{Y}}{T_{X}}or\frac{T_{X}}{T_{Y}} = \frac{2}{1}}$$