Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

Two rotating bodies AA and BB of masses mm and 2m2m with momenta of inertia IAI_A and IB(IB>IA)I_B (I_B > I_A) have equal kinetic energy of rotation. If LAL_A and LBL_B be their angular momenta respectively, then -

A

LA=LB2L_A = \frac{L_B}{2}

B

LA=2LBL_A = 2 L_B

C

LB>LAL_B > L_A

D

LA>LBL_A > L_B

Answer

LB>LAL_B > L_A

Explanation

Solution

K.EA=K.EBK.E_{A} = K.E_{B}
12IAωA2=12IBωB2\frac{1}{2} I_{A} \omega^{2}_{A} = \frac{1}{2} I_{B} \omega^{2}_{B}
ωAωB=IBIA\frac{\omega_{A}}{\omega_{B} } = \sqrt{\frac{I_{B}}{I_{A}}} .....(i)
LA=IAωALB=IBωBL_{A} =I_{A}\omega_{A} L_{B} = I_{B} \omega_{B}
LALB=IAIB×ωAωB=IAIB×IAIB\frac{L_{A}}{L_{B}} = \frac{I_{A}}{I_{B}} \times\frac{\omega_{A}}{\omega_{B}} = \frac{I_{A}}{I_{B}} \times \sqrt{\frac{I_{A}}{I_{B}}}
=IAIB<1= \sqrt{\frac{I_{A}}{I_{B}}} < 1
[LA<LB]\left[L_{A} < L_{B}\right]