Solveeit Logo

Question

Physics Question on thermal properties of matter

Two rods of same area of cross section and lengths, and conductivities K1K_1 and K2K_2 are connected in series. Then, in steady state conductivity of the combination is

A

(K1+K2)(K1K2)\frac{\left(K_{1} + K_{2}\right)}{\left(K_{1} K_{2} \right)}

B

2K1+K2(K1+K2)\frac{2 K_{1} + K_{2}}{\left(K_{1} + K_{2} \right)}

C

(K1+K2)2\frac{\left(K_{1} + K_{2}\right)}{2}

D

K1K2(K1+K2)\frac{K_{1} K_{2} }{\left(K_{1} + K_{2}\right)}

Answer

2K1+K2(K1+K2)\frac{2 K_{1} + K_{2}}{\left(K_{1} + K_{2} \right)}

Explanation

Solution

Let T0T_0 be the temperature of the junction of the two rods and AA be the area of cross-section of each rod. Under steady condition, the heat conducted per second through rod 1 is equal to the heat conducted per second through rod 2,
H=K1A(T1T0)L=K2A(T0T2)LH = \frac{K_{1} A \left(T_{1 } -T_{0}\right)}{L} = \frac{K_{2}A\left(T_{0} -T_{2}\right)}{L} \, \, \, \, \, ...(i)
where L is the length of each rod.
or K1(T1T0)=K2(T0T2)K_{1}\left(T_{1} -T_{0}\right) = K_{2}\left(T_{0} -T_{2}\right)
or T0=K1T1+K2T2K1+K2T_{0 } = \frac{K_{1}T_{1} + K_{2} T_{2}}{K_{1} +K_{2}} \, \, \, \, \, \, ....(ii)
Put equation (ii) in (i), we get
H=K1AL(T1K1T1+K2T2K1+K2)H = \frac{K_{1}A}{L} \left(T_{1} - \frac{K_{1}T_{1} +K_{2}T_{2}}{K_{1} + K_{2}}\right)
=K1K2(K1+K2)AL(T1T2)= \frac{K_{1}K_{2}}{\left(K_{1} + K_{2}\right)} \frac{A}{L} \left(T_{1} -T_{2}\right) \, \, \, \, ...(iii)
If KK is the equivalent thermal conductivity of the two rods, then
H=KA(T1T2)2LH= \frac{KA\left(T_{1} -T_{2}\right) }{2L} \, \, \, \, \, ....(iv)
From (iii) and (iv)
K2=K1K2K1+K2\frac{K}{2} = \frac{K_{1}K_{2}}{K_{1 } +K_{2}} or K=2K1K2K1+K2K= \frac{2K_{1 }K_{2}}{K_{1} +K_{2}}