Solveeit Logo

Question

Question: Two rings of radius R and nR made upof same material have the ratio of moment of inertia about an ax...

Two rings of radius R and nR made upof same material have the ratio of moment of inertia about an axis passing through centre is 1 : 8. The value of n is:

A

2

B

222 \sqrt { 2 }

C

4

D

½

Answer

2

Explanation

Solution

Ratio of moment of inertia of the rings

I1I2=(M1M2)(R1R2)2=(λl1λl2)(R1R2)2\frac { I _ { 1 } } { I _ { 2 } } = \left( \frac { M _ { 1 } } { M _ { 2 } } \right) \left( \frac { R _ { 1 } } { R _ { 2 } } \right) ^ { 2 } = \left( \frac { \lambda l _ { 1 } } { \lambda l _ { 2 } } \right) \left( \frac { R _ { 1 } } { R _ { 2 } } \right) ^ { 2 } =(2πR2πnR)(RnR)2= \left( \frac { 2 \pi R } { 2 \pi n R } \right) \left( \frac { R } { n R } \right) ^ { 2 }

I1I2=1n3=18\frac { I _ { 1 } } { I _ { 2 } } = \frac { 1 } { n ^ { 3 } } = \frac { 1 } { 8 }n3=8n ^ { 3 } = 8n=2n = 2